
CSE 341
Section 2

Spring 2020

Adapted from slides by Nick Mooney, Nicholas Shahan, Patrick Larson, and Dan Grossman

Today’s Agenda

• Testing
• Lists, Let-Expression (Review)
• Options
• Type synonyms
• Type generality
• Equality types
• Syntactic sugar

Reminder: Check out the CSE341 style guide as you
work on HW!
Also check out the style guides in section 1 slide!

CSE 341: Programming Languages 2

Testing

• You should still test your code!

• We will assign points to your testing file

• Just do something like this:

“Is expected output = actual output”

3CSE 341: Programming Languages

val test1 = ((4 div 4) = 1);

Section Learning Objectives

● Review building/accessing new types (e.g.
datatypes)

● Recognize type synonyms as “convenient” feature
● Be able to generalize specific types with

polymorphism (e.g. int list into ‘a list) and
equality types

● Practice using pattern-matching with case
expressions

CSE 341: Programming Languages 4

Lists

● Lots of new types: For any type t, the type t list describes lists
where all elements have type t
○ Examples: int list, bool list, int list list,

(int * int) list, (int list * int) list
● So [] can have type t list for any type t

○ SML uses type 'a list to indicate this (“tick a” or
“alpha”)

● For e1::e2 to type-check, we need a t such that e1 has type
t and e2 has type t list. Then the result type is t list
○ null: 'a list -> bool
○ hd: 'a list -> 'a
○ tl: 'a list -> 'a list

CSE 341: Programming Languages 5

Let-Expression
• Syntax:

• Each bi is any binding and e is any expression

• Type-checking: Type-check each bi and e in a static
environment that includes the previous bindings.

• Type of whole let-expression is the type of e.

• Evaluation: Evaluate each bi and e in a dynamic environment
that includes the previous bindings.

Result of whole let-expression is result of evaluating e.

CSE 341: Programming Languages 6

let b1 b2 ... bn in e end

Options

t option is a type for any type t
• (much like t list, but a different type, not a list)

Building:
• NONE has type 'a option (much like [] has type 'a list)
• SOME e has type t option if e has type t (much like e::[])

Accessing:
• isSome has type 'a option -> bool
• valOf has type 'a option -> 'a (exception if given NONE)

CSE 341: Programming Languages 7

Type Synonyms

• What does int * int * int represent?
• In HW1 we called it a date
• Wouldn’t it be nice to reflect this representation in

the source code itself?

type date = int * int * int

CSE 341: Programming Languages 8

Datatypes

• What if we want something unique? A new type?
• We can’t just use type synonyms because they can

only be built from existing types.
• Datatypes give us the ability to define custom

types.

CSE 341: Programming Languages 9

datatype foo = bar | baz of int | qux of bool

type vs datatype

• datatype introduces a new type name, distinct
from all existing types

• type is just another name

datatype suit = Club | Diamond | Heart | Spade
datatype rank = Jack | Queen | King | Ace

| Num of int

type card = suit * rank

CSE 341: Programming Languages 10

Type Synonyms

Why?
• For now, just for convenience
• It doesn’t let us do anything new

Later in the course we will see another use related to
modularity.

CSE 341: Programming Languages 11

Type Generality

Write a function that appends two string lists…

CSE 341: Programming Languages 12

Type Generality

• We would expect

string list * string list -> string list

‘a list * ‘a list -> ‘a list

• But the type checker found

• ‘a are called Polymorphic Types
• Why is this OK?

CSE 341: Programming Languages 13

More General Types
• The type

‘a list * ‘a list -> ‘a list

string list * string list -> string list

is more general than the type

and “can be used” as any less general type, such as

int list * int list -> int list

• But it is not more general than the type

int list * string list -> int list

CSE 341: Programming Languages 14

The Type Generality Rule

The “more general” rule
A type t1 is more general than the type t2 if you
can take t1, replace its type variables

consistently, and get t2

What does consistently mean?

CSE 341: Programming Languages 15

Equality Types

Write a list “contains” function…

CSE 341: Programming Languages 16

Equality Types

• The double quoted variable arises from use of the =
operator
• We can use = on most types like int, bool,
string, tuples (that contain only “equality
types”)

• Functions and real are not ”equality types”
• Generality rules work the same, except substitution

must be some type which can be compared with =
• You can ignore warnings about “calling polyEqual”

CSE 341: Programming Languages 17

More Syntactic Sugar

• Tuples are just records

• If-then-else is implemented as syntactic sugar for a
case statement

CSE 341: Programming Languages 18

If-then-else
• We’ve just covered case statements
• How could we implement if-then-else

case x of
true => “apple”

| false => “banana”

if x then “apple” else “banana”

CSE 341: Programming Languages 19

val-Pattern Matching

Remember our unit test?

Just a pattern match!
“Match the left hand side against the value ‘template’
true, binding any variables (there aren’t any!)”

(* Neat trick for creating hard-fail tests: *)

val true = ((4 div 4) = 1);

CSE 341: Programming Languages 20

Adventures in pattern matching

• Shape example
• Function-pattern syntax if we get to it

CSE 341: Programming Languages 21

