
4/3/2020

1

CSE341: Programming Languages

Section 1

Spring 2020

Adapted from slides by Dan Grossman, Eric Mullen and Ryan Doenges

Agenda

• Introduction

• Course Resources

• Set up

• REPL

• Emacs Basics

• Shadowing

• Debugging

• Bonus: “Generics” and Equality Types

2CSE 341: Programming Languages

• Feel free to share your video and ask questions!

– Especially in section!

• Breakout rooms will be used to have some class discussion

• No midterm, no final!

– 4 quizzes, 8 HWs

• Two late days for each HW
– Work submitted after the due date may not be graded and

returned before the next assignment is due and/or may be

returned with less feedback.

3

Remote Quarter

CSE 341: Programming Languages

Course Resources

4CSE 341: Programming Languages

• We have a ton of course resources. Please use them!

• If you get stuck or need help:

– Ask questions in Ed

– Come to Office Hours via Zoom

• We’re here for you

Setup

• Excellent guide located on the course website under Resources

• We’re going to spend about 5 minutes setting up now (so you

can follow along for the rest of section)

• You need 3 things installed:

– Emacs

– SML

– SML mode for Emacs

5CSE 341: Programming Languages

Editor vs. IDE

• You may be familiar with IDEs (jGrasp, Eclipse, IntelliJ, etc.)
– Handles compilation, error reporting, running, …

• Emacs is an editor
– Many similar features! e.g., Syntax highlighting, …

– Not tied to a specific language

– (Vim is another alternative editor you can use)
• There is no clear distinction between these two concepts
• Running and compilation is done outside the editor
• You can code in all programming languages we cover in 341

with Emacs - so please get comfortable with it :)

6CSE 341: Programming Languages

4/3/2020

2

ML Development Workflow

• REPL is the general term for tools like “Run I/O” you have

been using in jGRASP for CSE 142/3

• REPL means Read Eval Print Loop

• Read: ask the user for semicolon terminated input

• Evaluate: try to run the input as ML code

• Print: show the user the result or any error messages

produced by evaluation

• Loop: give another prompt back to continue

7CSE 341: Programming Languages

ML Development Workflow

• Simple Demo of REPL

– You can type in any ML code you want, it will evaluate it

– Useful to put code in .sml file for reuse

– Every command must end in a semicolon (;)

– Load .sml files into REPL with use command

8CSE 341: Programming Languages

Emacs Basics

• Don’t be scared!

• Commands have particular notation: C-x means hold Ctrl
while pressing x

• Meta key is Alt (thus M-z means hold Alt, press z)

– C-x C-s is Save File

– C-x C-f is Open File

– C-x C-c is Exit Emacs

• C-g is Escape (Abort any partial command you may have
entered. If you get confused while typing use this)

• M-x is “Do a thing”

9CSE 341: Programming Languages

Shadowing

• Does the above code compile? If so, what do you
think it does and what is the value of b?

• Remember, SML doesn’t have mutation.

10CSE 341: Programming Languages

val a = 1;
val b = 2 + a;
val a = 3;

Shadowing

• You can’t change a variable, but you can add
another with the same name

• When looking for a variable definition, most recent
is always used

• Shadowing is usually considered bad style

11CSE 341: Programming Languages

val a = 1;
val b = 2 + a;
val a = 3;

a -> int
a -> int, b -> int
a -> int, b -> int, a -> int

Shadowing

• This behavior, along with use in the REPL can lead to
confusing effects

• Suppose I have the following program:

• I load that into the REPL with use. Now, I decide to change
my program, and I delete a line, giving this:

• I load that into the REPL without restarting the REPL. What
goes wrong?

– Hint: what is the value of y?

12CSE 341: Programming Languages

val x = 8;
val y = 2;

val x = 8;

4/3/2020

3

Comparison Operators

• You can compare numbers in SML!

• Each of these operators has 2 subexpressions of type int,

and produces a bool

13CSE 341: Programming Languages

= (Equality) < (Less than) <= (Less than or
equal)

<> (Inequality) > (Greater than) >= (Greater than
or equal)

Boolean Operators
• You can also perform logical operations over bools!

• and is completely different, we may talk about it later

• andalso/orelse are SML built-ins as they use short-circuit

evaluation

– We’ll talk about why they have to be built-ins later

14CSE 341: Programming Languages

Operation Syntax Type-Checking Evaluation

andalso e1 andalso e2 e1 and e2 have type bool Same as Java’s e1 && e2

orelse e1 orelse e2 e1 and e2 have type bool Same as Java’s e1 || e2

not not e1 e1 has type bool Same as Java’s !e1

And… Those Bad Styles

• Language does not need andalso, orelse, or not

• Using more concise forms generally much better style
• And definitely please do not do this:

15CSE 341: Programming Languages

(* e1 andalso e2 *)
if e1
then e2
else false

(* e1 orelse e2 *)
if e1
then true
else e2

(* not e1 *)
if e1
then false
else true

(* just say e (!!!) *)
if e
then true
else false

Debugging

DEMO

• Errors can occur at 3 stages:

– Syntax: Your program is not “valid SML” in some (usually

small and annoyingly nitpicky) way

– Type Check: One of the type checking rules didn’t work

out

– Runtime: Your program did something while running

that it shouldn’t

• The best way to debug is to read what you wrote carefully,

and think about it.

16CSE 341: Programming Languages

Testing

• We don’t have a unit testing framework

• You should still test your code!

• Just do something like this:

17CSE 341: Programming Languages

val test1 = ((4 div 4) = 1);

Parametric Polymorphism (“Generics”)

• What’s wrong with this code?

18

fun swap(pair : int * string) =
(#2 pair, #1 pair)

val x = swap ("hello", 123)

• Technically correct answer: there’s a type error
• Better answer: swap should have a more general type

CSE 341: Programming Languages

4/3/2020

4

CSE 14X Time: How do Java?

19

class Pair<A, B> {
final A fst; final B snd;
Pair (A fst, B snd) {

this.fst = fst;
this.snd = snd;

}
}

class Main {
static <A, B> Pair<B, A> swap(Pair<A, B> p) {

return new Pair(p.snd, p.fst);
}
public static void main(String[] args) {

Pair<Integer, String> x =
Main.swap(new Pair("hello", 123));

}
}

Anything you can do, I can do better.

• We can make our swap function generic!

20

fun swap(pair : 'a * 'b) =
(#2 pair, #1 pair)

val c = swap ("hello", 123)

• What do you think the type of swap is?

CSE 341: Programming Languages

• “=” is the hardest concept in Programming Language Theory
• Unlike Java, SML doesn’t have equality for every type
• This is good! Equality doesn’t always make sense
• One reason: Floating Point is weird

Equality

21

val x = 0.1 + 0.2;
val y = 0.3;
val z = x - y;
(* z is not zero!!! *)

CSE 341: Programming Languages

• “=” is the hardest concept in Programming Language Theory
• Unlike Java, SML doesn’t have equality for every type
• This good! Equality doesn’t always make sense
• One reason: Floating Point is weird
• Other reason: It doesn’t make sense for functions

Equality (cont.)

22

fun f(n : int) =
if n > 100 then n-1 else n+1

fun g(n : int) = n - 1
(* How could we check f = g? *)

• Bonus for those who’ve taken CSE 311: “Do these two
programs do the same thing” is reducible to the halting
problem

CSE 341: Programming Languages

• What happens if I write the following program?

Parametric Polymorphism & Equality

23

fun f(n, a, b) =
if a = b then n - 1 else n + 1

val x = f(1, 2, 3)
val y = f(1, 2.0, 3.0)

CSE 341: Programming Languages

