
Quiz 3
Questions 1 - 3 (6 versions for #1, 4 versions for #2-3)

1. (define (f1 x)

 (cond [(null? x) 0]

 [(number? x) x]

 [(string? x) (string-length x)]

 [(list? x) (+ (f1 (car x)) (f1 (cdr x)))]

 [#t 0]))

(define x (cons ??? list’))
(define y (f1 x))

(define ans (= z’ y))

list’ z’ ???

(list 1 "ab" (list "cde" #f) 5) 14 3

(list 1 "ab" (list "cde" #f) 5) 18 7

(list 1 "ab" (list "cde" #f) 5) 11 0

(list 3 "xyz" (list #t 4) "uw") 14 2

(list 3 "xyz" (list #t 4) "uw") 12 0

(list 3 "xyz" (list #t 4) "uw") 20 8

2. Question 2 had a bug rendering it impossible to answer without mutation, which was not intended. All
students received full credit for this question, regardless of response.

3. (define r 5)

(define (f3 s t)

 (let* ([t t’]
 [r t])

 (+ r s t)))

(define q (f3 ??? 10))

(define ans3 (= z’ q))

t’ z’ ???

2 10 6

2 6 2

5 12 2

5 10 0

Question 4-6 (5 versions for #4)

4. (define x ???)

(define y (foo x))

(define ans (equal? y (cons a’ b’)))

a’ b’ ???

0 3 (list 1 3 5)

or any list with 0 even numbers and 3 odd numbers

2 0 (list 2 4)

or any list with 2 even numbers and 0 odd numbers

3 1 (list 2 3 4 6)

or any list with 3 even numbers and 1 odd number

2 4 (list 1 2 3 4 5 7)

or any list with 2 even numbers and 4 odd numbers

3 3 (list 1 2 3 4 5 6)

or any list with 3 even numbers and 3 odd numbers

5. (list 1 2 3 4 5 6)

or any list with no sublists containing numbers

6. (list 1 2 (list 3 4 (list 5)) 6)
or any list with a sublist that contains numbers

Questions 7-8 (4 versions for #8)

7. (define (stream-map f s)

 (lambda () (cons (f (car (s))) (stream-map f (cdr (s))))))

8. Write an expression to go in place of ??? so that ans results in a stream containing the same values as s’. Assume
stream-map works as described above, regardless of what you wrote in the previous problem.

(define ans (stream-map ??? t’))

s’ t’ ???

negs nats (lambda (n) (* n

-1))

evens nats (lambda (n) (* n 2))

odds evens (lambda (n) (- n 1))

evens odds (lambda (n) (+ n 1))

Questions 9-15 (questions were shuffled)

A type system that rejects all programs Sound but not complete

A type system that rejects any program that contains a first
expression or a second expression, and accepts all other programs

Sound but not complete

A type system that rejects any program that contains a first or
second expression where the argument is not an apair
expression and accepts all other programs

Sound but not complete

A type system that rejects any program that contains a first or
second expression where the argument is a call expression and
accepts all other programs

Neither sound nor complete

A type system that rejects any program that contains a first or
second expression where the argument is an int expression, an
add expression, or an munit expression and accepts all other
programs

Complete but not sound

A type system that rejects any program that contains a first
expression and accepts all other programs

Neither sound nor complete

A type system that accepts all programs Complete but not sound

Questions 16-17

16. [(ispos? e)
 (let ([v1 (eval-exp (ispos-e e))])

 (if (const? v1)

 (bool (> (const-int v1) 0))

 (error "ispos applied to non-number")))]

17. (define (gt e1 e2) (ispos (add e1 (negate e2))))

