Quiz 3

Questions 1-3 (6 versions for \#1, 4 versions for \#2-3)

1. (define (f1 x)
(cond [(null? x) 0]
[(number? x) x]
[(string? x) (string-length x)]
[(list? x) (+ (f1 (car x)) (f1 (cdr x)))]
[\#t 0]))
(define x (cons ??? list'))
(define y (f1 x))
(define ans (= $\left.\boldsymbol{z}^{\prime} \mathrm{y}\right)$)

| list' | \mathbf{z}^{\prime} | ??? |
| :--- | :--- | :--- | :--- |
| (list 1 "ab" (list "cde" \#f) 5) | 14 | 3 |
| (list 1 "ab" (list "cde" \#f) 5) | 18 | 7 |
| (list 1 "ab" (list "cde" \#f) 5) | 11 | 0 |
| (list 3 "xyz" (list \#t 4) "uw") | 14 | 2 |
| (list 3 "xyz" (list \#t 4) "uw") | 12 | 0 |

2. Question 2 had a bug rendering it impossible to answer without mutation, which was not intended. All students received full credit for this question, regardless of response.
3. (define r 5)
(define (f3 s t)
(let* ([t t']
[rt])
(+ r s t)))
(define q (f3 ??? 10))
(define ans3 (= \boldsymbol{z}^{\prime} q))

t^{\prime}	\mathbf{z}^{\prime}	???
2	10	6
2	6	2
5	12	2
5	10	0

Question 4-6 (5 versions for \#4)

4. (define x ???)
(define y (foo x))
(define ans (equal? y (cons $\left.\left.a^{\prime} b^{\prime}\right)\right)$)

a^{\prime}	b^{\prime}	? ? ?
0	3	(list 13 5) or any list with 0 even numbers and 3 odd numbers
2	0	(list 2 4) or any list with 2 even numbers and 0 odd numbers
3	1	(list 23046) or any list with 3 even numbers and 1 odd number
2	4	(list $1 \begin{array}{llllll} & 2 & 3 & 5 & 7)\end{array}$ or any list with 2 even numbers and 4 odd numbers
3	3	(list $1 \begin{array}{llllll}2 & 3 & 4 & 5 & 6)\end{array}$ or any list with 3 even numbers and 3 odd numbers

5. (list 12345 6)
or any list with no sublists containing numbers
6. (list 12 (list 34 (list 5)) 6)
or any list with a sublist that contains numbers

Questions 7-8 (4 versions for \#8)

7. (define (stream-map f s)
(lambda () (cons (f (car (s))) (stream-map f(cdr (s))))))
8. Write an expression to go in place of ? ? ? so that ans results in a stream containing the same values as \boldsymbol{s}^{\prime}. Assume stream-map works as described above, regardless of what you wrote in the previous problem.
(define ans (stream-map ??? t^{\prime}))

s^{\prime}	t^{\prime}	???
negs	nats	$\begin{aligned} & \text { (lambda (n) (* n } \\ & -1) \text {) } \end{aligned}$
evens	nats	(lambda (n) (* n 2))
odds	evens	(lambda (n) (- n 1))
evens	odds	(lambda (n) (+ n 1))

Questions 9-15 (questions were shuffled)

A type system that rejects all programs	Sound but not complete
A type system that rejects any program that contains a first expression or a second expression, and accepts all other programs	Sound but not complete
A type system that rejects any program that contains a first or second expression where the argument is not an apair expression and accepts all other programs	Sound but not complete
A type system that rejects any program that contains a first or second expression where the argument is a call expression and accepts all other programs	Neither sound nor complete
A type system that rejects any program that contains a first or second expression where the argument is an int expression, an add expression, or an munit expression and accepts all other programs	Complete but not sound
A type system that rejects any program that contains a first expression and accepts all other programs	Neither sound nor complete
A type system that accepts all programs	Complete but not sound

Questions 16-17

16. [(ispos? e)
(let ([v1 (eval-exp (ispos-e e))])
(if (const? v1)
(bool (> (const-int v1) 0))
(error "ispos applied to non-number")))]
17. (define (gt e1 e2) (ispos (add e1 (negate e2))))
