
Quiz 1
Questions 1 - 3 (6 possible versions each)

1. fun foo (a, b) =

 if b = 0

 then a

 else foo (b, a mod b)

val x = x’
val y = ???

val ans = (foo (x, y) = z’)

x’ z’ y

35 7 any multiple of 7, but not a multiple of 5

35 5 any multiple of 5, but not a multiple of 7

35 1 any integer not a multiple of 5 or 7

12 6 any multiple of 6, but not a multiple of 12

12 3 any multiple of 3, but not a multiple of 4

12 1 any integer not a multiple of 2, 3, or 4

2. val x = 2

val y = ???

val q =

 let

 val x = 7

 val z = x + z’
 in

 x + y - z

 end

val ans = (q = q’)

z’ q’ y

1 2 3

1 5 6

1 8 9

2 0 2

2 2 4

2 7 9

3. fun baz (x, lst) =

 let

fun help (n, l) =

 case l of

 [] => NONE

 | head::tail => if head = x

 then SOME n

 else help (n + 1, tail)

 in

help (0, lst)

 end

val x = ???

val y = y’
val ans = (baz(x, y) = z’)

y’ z’ x

[4, 8, 15, 16, 23, 42] SOME 0 4

[4, 8, 15, 16, 23, 42] SOME 3 16

[4, 8, 15, 16, 23, 42] NONE 1 (or any number not in the list)

[8, 6, 7, 5, 3, 0, 9] SOME 3 5

[8, 6, 7, 5, 3, 0, 9] SOME 5 0

[8, 6, 7, 5, 3, 0, 9] NONE 1 (or any number not in the list)

Questions 4 - 6
4. (* evaluates to SOME v where v is the first negative number

 * in lst, or NONE there are no negative numbers in lst *)

fun first_negative lst =

 case lst of

 [] => NONE

 | head::tail => if head < 0

 then head

 else first_negative tail

a) Types of branches don’t match; evaluating to int option in empty case but int in
non-empty case

b) fun first_negative lst =

 case lst of

 [] => NONE

 | head::tail => if head < 0

 then SOME head
 else first_negative tail

5. (* sums the first element of each list in xs *)

fun sum_heads xs =

 case xs of

 [] => 0

 | x::xs' => x + sum_heads xs'

val ans = sum_heads [[1, 2], [3, 4, 5], [6]]

a) Trying to add int list to an int in the non-empty case
b) fun sum_heads xs =

 case xs of

 [] => 0

 | []::xs’ => sum_heads xs’
 | (x::_)::xs' => x + sum_heads xs'
val ans = sum_heads [[1, 2], [3, 4, 5], [6]]

fun sum_heads xs =

 case xs of

 [] => 0

 | []::xs’ => sum_heads xs’
 | x::xs' => hd x + sum_heads xs'
val ans = sum_heads [[1, 2], [3, 4, 5], [6]]

6. datatype food =

 Pizza of string

 | Burger of int * bool

 | Salad

(* determines whether a food is healthy (Salad) or not (Pizza and

 * Burger) *)

fun is_healthy f =

 case f of

Pizza => false

 | Burger => false

 | Salad => true

a) Constructors Pizza and Burger in patterns are missing arguments
b) fun is_healthy f =

 case f of

Pizza _ => false
 | Burger _ => false
 | Salad => true

Questions 7 - 8 (2 possible versions each)
7. fun bar lst =

 case lst of

[] => 0

 | NONE::tail => bar tail

 | SOME n::tail => n + (bar tail)

a) Computes the sum of all the SOME elements in the argument
b) fun sum_somes_tail lst =

 let

fun loop (lst, acc) =

 case lst of

[] => acc

 | NONE::tail => loop(tail, acc)

 | SOME n::tail => loop(tail, n + acc)

 in

loop(lst, 0)

 end

fun bar lst =

 case lst of

[] => 0

 | NONE::tail => 1 + (bar tail)

 | _::tail => bar tail

a) Counts the number of NONE elements in the argument
b) fun count_nones_tail lst =

 let

fun loop (lst, acc) =

 case lst of

[] => acc

 | NONE::tail => loop(tail, 1 + acc)

 | _::tail => loop(tail, acc)

 in

loop (lst, 0)

 end

8. fun foo (strs, sep) =

 case strs of

[] => ""

 | s::[] => s

 | s::strs' => s ^ sep ^ foo(strs', sep)

a) Concatenates the elements of strs with sep between each
b) fun concat_with_tail (strs, sep) =

 let

fun loop (strs, acc) =

 case strs of

[] => acc

 | [s] => acc ^ s

 | s::ss' => loop (ss', acc ^ s ^ sep)

 in

loop (strs, "")

 end

fun foo nums =

 case nums of

[] => 0

 | [n] => n

 | x::y::tail => x + (foo tail)

a) Sums every other element in the argument
b) fun sum_every_other_tail nums =

 let

fun loop (nums, acc) =

 case nums of

[] => acc

 | [n] => n + acc

 | x::y::tail => loop(tail, x + acc)

 in

loop (nums, 0)

 end

Questions 9 - 10

For the next two questions, recall the following code from lecture:

(* a datatype to represent arithmetic expressions *)

datatype exp =

 Const of int

 | Negate of exp

 | Add of exp * exp

 | Mult of exp * exp

(* evaluates its argument to produce an integer result *)

fun eval e =

 case e of

Const i => i

 | Negate e1 => ~ (eval e1)

 | Add (e1, e2) => (eval e1) + (eval e2)

 | Mult (e1, e2) => (eval e1) * (eval e2)

Question 6 (4 possible versions)

9. Write an expression to go in place of ??? below so that ans will be bound to z’ after the
given code is executed. Assume the datatype exp and the function eval are bound.

val x = ???

val y = Add(x, Negate(Mult(Const a’, Const b’)))
val ans = eval y

z’ a’ b’ x

15 3 ~2 Const 9

15 ~1 3 Const 12

23 4 ~3 Const 11

23 ~1 3 Const 20

10.Write a function remove_add_zeroes that has type exp -> exp that returns its argument,
but with all instances of adding an expression to Const 0 removed.

fun remove_add_zeroes e =

 case e of

Add (Const 0, e2) => remove_add_zeroes e2

 | Add (e1, Const 0) => remove_add_zeroes e1

 | Add (e1, e2) => Add (remove_add_zeroes e1,

 remove_add_zeroes e2)

 | Mult (e1, e2) => Mult (remove_add_zeroes e1,

 remove_add_zeroes e2)

 | Negate e1 => Negate (remove_add_zeroes e1)

 | _ => e

