
Quiz 1
Questions 1 - 3 (6 possible versions each)

1. fun foo (a, b) =

 if b = 0

 then a

 else foo (b, a mod b)

val x = ​x’
val y = ???

val ans = (foo (x, y) = ​z’​)

x’ z’ y

35 7 any multiple of 7, but not a multiple of 5

35 5 any multiple of 5, but not a multiple of 7

35 1 any integer not a multiple of 5 or 7

12 6 any multiple of 6, but not a multiple of 12

12 3 any multiple of 3, but not a multiple of 4

12 1 any integer not a multiple of 2, 3, or 4

2. val x = 2

val y = ???

val q =

 let

 val x = 7

 val z = x + ​z’
 in

 x + y - z

 end

val ans = (q = ​q’​)

z’ q’ y

1 2 3

1 5 6

1 8 9

2 0 2

2 2 4

2 7 9

3. fun baz (x, lst) =

 let

fun help (n, l) =

 case l of

 [] => NONE

 | head::tail => if head = x

 then SOME n

 else help (n + 1, tail)

 in

help (0, lst)

 end

val x = ???

val y = ​y’
val ans = (baz(x, y) = ​z’​)

y’ z’ x

[4, 8, 15, 16, 23, 42] SOME 0 4

[4, 8, 15, 16, 23, 42] SOME 3 16

[4, 8, 15, 16, 23, 42] NONE 1 (or any number not in the list)

[8, 6, 7, 5, 3, 0, 9] SOME 3 5

[8, 6, 7, 5, 3, 0, 9] SOME 5 0

[8, 6, 7, 5, 3, 0, 9] NONE 1 (or any number not in the list)

Questions 4 - 6
4. (* evaluates to SOME v where v is the first negative number

 * in lst, or NONE there are no negative numbers in lst *)

fun first_negative lst =

 case lst of

 [] => NONE

 | head::tail => if head < 0

 then head

 else first_negative tail

a) Types of branches don’t match; evaluating to ​int option​ in empty case but ​int ​in
non-empty case

b) fun first_negative lst =

 case lst of

 [] => NONE

 | head::tail => if head < 0

 then ​SOME head
 else first_negative tail

5. (* sums the first element of each list in xs *)

fun sum_heads xs =

 case xs of

 [] => 0

 | x::xs' => x + sum_heads xs'

val ans = sum_heads [[1, 2], [3, 4, 5], [6]]

a) Trying to add ​int list​ to an ​int ​in the non-empty case
b) fun sum_heads xs =

 case xs of

 [] => 0

 | ​[]::xs’ => sum_heads xs’
 | ​(x::_)::xs'​ => x + sum_heads xs'
val ans = sum_heads [[1, 2], [3, 4, 5], [6]]

fun sum_heads xs =

 case xs of

 [] => 0

 | ​[]::xs’ => sum_heads xs’
 | x::xs' => ​hd x​ + sum_heads xs'
val ans = sum_heads [[1, 2], [3, 4, 5], [6]]

6. datatype food =

 Pizza of string

 | Burger of int * bool

 | Salad

(* determines whether a food is healthy (Salad) or not (Pizza and

 * Burger) *)

fun is_healthy f =

 case f of

Pizza => false

 | Burger => false

 | Salad => true

a) Constructors ​Pizza ​and ​Burger​ in patterns are missing arguments
b) fun is_healthy f =

 case f of

Pizza ​_​ => false
 | Burger ​_​ => false
 | Salad => true

Questions 7 - 8 (2 possible versions each)
7. fun bar lst =

 case lst of

[] => 0

 | NONE::tail => bar tail

 | SOME n::tail => n + (bar tail)

a) Computes the sum of all the ​SOME​ elements in the argument
b) fun sum_somes_tail lst =

 let

fun loop (lst, acc) =

 case lst of

[] => acc

 | NONE::tail => loop(tail, acc)

 | SOME n::tail => loop(tail, n + acc)

 in

loop(lst, 0)

 end

fun bar lst =

 case lst of

[] => 0

 | NONE::tail => 1 + (bar tail)

 | _::tail => bar tail

a) Counts the number of ​NONE ​elements in the argument
b) fun count_nones_tail lst =

 let

fun loop (lst, acc) =

 case lst of

[] => acc

 | NONE::tail => loop(tail, 1 + acc)

 | _::tail => loop(tail, acc)

 in

loop (lst, 0)

 end

8. fun foo (strs, sep) =

 case strs of

[] => ""

 | s::[] => s

 | s::strs' => s ^ sep ^ foo(strs', sep)

a) Concatenates the elements of ​strs ​with ​sep ​between each
b) fun concat_with_tail (strs, sep) =

 let

fun loop (strs, acc) =

 case strs of

[] => acc

 | [s] => acc ^ s

 | s::ss' => loop (ss', acc ^ s ^ sep)

 in

loop (strs, "")

 end

fun foo nums =

 case nums of

[] => 0

 | [n] => n

 | x::y::tail => x + (foo tail)

a) Sums every other element in the argument
b) fun sum_every_other_tail nums =

 let

fun loop (nums, acc) =

 case nums of

[] => acc

 | [n] => n + acc

 | x::y::tail => loop(tail, x + acc)

 in

loop (nums, 0)

 end

Questions 9 - 10

For the next two questions, recall the following code from lecture:

(* a datatype to represent arithmetic expressions *)

datatype exp =

 Const of int

 | Negate of exp

 | Add of exp * exp

 | Mult of exp * exp

(* evaluates its argument to produce an integer result *)

fun eval e =

 case e of

Const i => i

 | Negate e1 => ~ (eval e1)

 | Add (e1, e2) => (eval e1) + (eval e2)

 | Mult (e1, e2) => (eval e1) * (eval e2)

Question 6 (4 possible versions)

9. Write an expression to go in place of ​???​ below so that ​ans​ will be bound to ​z’​ ​after the
given code is executed. Assume the datatype ​exp​ and the function ​eval​ are bound.

val x = ???

val y = Add(x, Negate(Mult(Const ​a’​, Const ​b’​)))
val ans = eval y

z’ a’ b’ x

15 3 ~2 Const 9

15 ~1 3 Const 12

23 4 ~3 Const 11

23 ~1 3 Const 20

10.Write a function ​remove_add_zeroes​ that has type ​exp -> exp​ that returns its argument,
but with all instances of adding an expression to ​Const 0​ removed.

fun remove_add_zeroes e =

 case e of

Add (Const 0, e2) => remove_add_zeroes e2

 | Add (e1, Const 0) => remove_add_zeroes e1

 | Add (e1, e2) => Add (remove_add_zeroes e1,

 remove_add_zeroes e2)

 | Mult (e1, e2) => Mult (remove_add_zeroes e1,

 remove_add_zeroes e2)

 | Negate e1 => Negate (remove_add_zeroes e1)

 | _ => e

