Quiz 1

Questions 1 - 3 (6 possible versions each)
1. fun foo (a, b) =

if b =0

then a

else foo (b, a mod b)
val x = x’/
val y = 2727
val ans = (foo (x, y) = z7)
x’ z’ Y
35 7 any multiple of 7, but not a multiple of 5
35 5 any multiple of 5, but not a multiple of 7
35 1 any integer not a multiple of 5 or 7
12 6 any multiple of 6, but not a multiple of 12
12 3 any multiple of 3, but not a multiple of 4
12 1 any integer not a multiple of 2, 3, or 4

2. val x = 2

val y = 27272
val g =
let
val x =7
val z = x + z/
in

end
val ans = (g = q’)
z’ q’ y
1 2 3
1 5 6
1 8 9
2 0 2
2 2 4
2 7 9

3. fun baz (x, lst) =
let
fun help (n, 1) =

case 1 of

[] => NONE
| head::tail => if head = x
then SOME n
else help (n + 1, tail)
in
help (0, 1st)
end
val x = 2?27?27
val v = y’
val ans = (baz(x, y) = z7)
y’ z’ X
(4, 8, 15, 16, 23, 42] SOME 0 4
[4, 8, 15, 1o, 23, 42] SOME 3 16

[4, 8, 15, 16, 23, 42] NONE 1 (or any number not in the list)
[8, 6, 7, 5, 3, 0, 9] SOME 5
[8, 6, 7, 5, 3, 0, 9] SOME 0
(8, 6, 7, 5, 3, 0, 9] NONE 1 (or any number not in the list)

Questions 4 - 6
4. (* evaluates to SOME v where v is the first negative number
* in 1lst, or NONE there are no negative numbers in lst *)
fun first negative lst =
case lst of
[] => NONE
| head::tail => if head < 0

then head
else first negative tail

a) Types of branches don’t match; evaluating to int option in empty case but int in
non-empty case
b) fun first negative lst =
case lst of
[] => NONE
| head::tail => 1if head < 0

then [SOME head

else first negative tail

5. (* sums the first element of each list in xs ¥*)
fun sum heads xs =
case xs of

[] => 0
| x::xs' => x + sum heads xs'
val ans = sum heads [[1, 2], [3, 4, 5], [6]]

a) Tryingtoadd int 1isttoan int inthe non-empty case
b) fun sum heads xs =
case xs of
[] => 0

| => x + sum heads xs'
val ans = sum heads [[1, 2], [3, 4, 5], [6]]

fun sum heads xs =
case xs of
[] =>0

|
| x::xs' => - + sum _heads xs'
val ans = sum heads [[1, 2], [3, 4, 5], [6]]

6. datatype food =
Pizza of string
| Burger of int * bool
| Salad

(* determines whether a food is healthy (Salad) or not (Pizza and
* Burger) ¥*)
fun is healthy f =
case f of
Pizza => false
| Burger => false
| Salad => true

a) Constructors Pizza and Burger in patterns are missing arguments
b) fun is healthy f =
case f of
Pizza || => false
| Burger _ => false
| Salad => true

Questions 7 - 8 (2 possible versions each)
7. fun bar 1lst

case 1lst of
[] => 0

| NONE::tail => bar tail

| SOME n::tail => n + (bar tail)

a) Computes the sum of all the SOME elements in the argument
b) fun sum somes tail Ist

let

fun loop (1lst,

acc)
case 1st of

[] => acc
|

NONE: :tail => loop(tail,
|

acc)
SOME n::tail => loop(tail, n + acc)
in

loop(lst, 0)
end

fun bar 1lst =

case 1lst of
[] => 0

| NONE::tail => 1 + (bar tail)

| ::tail => bar tail

a) Counts the number of NONE elements in the argument
b) fun count nones tail Ist
let

fun loop (1st, acc) =

case 1st of
[] => acc

| NONE::tail => loop(tail, 1 + acc)
| ::tail => loop(tail, acc)
in
loop (1st, O0)
end

8.

fun foo (strs, sep) =

case strs of
[] => nn
:[] => s

S:
| s::strs' => s *~ sep ~ foo(strs',

sep)

a) Concatenates the elements of strs with sep between each

b) fun concat with tail (strs, sep) =

let
fun loop (strs, acc) =
case strs of
[] => acc
| [s] => acc ~ s
| s::ss8'" => loop (ss',
in
loop (strs,

n ")

end

acc

A

S

A

sep)

fun foo nums =
case nums of
[] => 0
| [n] => n
| x::y::tail => x + (foo tail)

a) Sums every other element in the argument
b) fun sum every other tail nums =
let
fun loop (nums, acc) =
case nums of
[] => acc

| [n] => n + acc

| x::y::tail => loop(tail, x + acc)

in
loop (nums, O0)
end

Questions 9 - 10
For the next two questions, recall the following code from lecture:

(* a datatype to represent arithmetic expressions *)
datatype exp =

Const of int

| Negate of exp

| Add of exp * exp

| Mult of exp * exp

(* evaluates its argument to produce an integer result *)
fun eval e =
case e of
Const 1 => 1

| Negate el => ~ (eval el)
| Add (el, e2) => (eval el) + (eval e2)
| Mult (el, e2) => (eval el) * (eval e2)

Question 6 (4 possible versions)

9. Write an expression to go in place of 2?2 below so that ans will be bound to z” after the
given code is executed. Assume the datatype exp and the function eval are bound.

val x = 2?27?27

val y = Add(x, Negate (Mult (Const a’, Const b’)))
val ans = eval y

z’ a’ b’ b 4

15 3 ~2 Const 9

15 ~1 3 Const 12

23 4 ~3 Const 11

23 ~1 3 Const 20

10. Write a function remove add zeroes that has type exp -> exp that returns its argument,
but with all instances of adding an expression to Const 0 removed.

fun remove add zeroes e
case e of
Add (Const 0, e2)

| Add (el, Const 0)
| Add (el, e2) => Add (remove_ add zeroes
remove add zeroes e2)

(remove add zeroes el,
remove add zeroes e2)
(remove add zeroes el)

=> remove add zeroes e2
=> remove add zeroes el
el,

| Mult (el, e2) => Mult

Negate el => Negate
| => e

