
1

Name: __ NetID: ________________

CSE 341 Winter 2020 Midterm

Please do not turn the page until 9:30.

Rules:

● Please print your name and NetID above extremely clearly.

● The exam is closed-book, closed-note, etc., except one side of a 8.5x11in page.

● Please stop promptly at 10:20.

● There are 100 points, distributed evenly among 5 multi-part questions.

● The exam is printed double-sided, with pages numbered up to 12 (then bonus).

Advice:

● Read the questions carefully. Understand before you answer.

● Be strategic with your time. Don’t get stuck. Get all the points you can.

● Write down thoughts and intermediate steps so we can give partial credit.

● Clearly indicate your final answer.

● Questions are not in order of difficulty. Always try answering everything.

● Tear off the Reference Sheet so you can refer to it more easily.

● If you have questions, ask.

● Relax. You are here to learn.

2

Question 1 (20 points). For each of part of this question:
1. Identify the type of the function f
2. Identify the result bound to ans
3. Identify whether f is tail-recursive (“TR” for short). A non-recursive function is

trivially not TR. If you think the function is not TR, briefly explain why.

(A) fun f (i, x) =

if i = 0 then "#" else
x ^ " " ^ f (i - 1, x ^ x)

 val ans = f (3, "ab")

 f :

ans =

f TR?

(B) fun f (x, y) = let
 fun g z = let val z = y in z - x end
 in
 if x <= 0
 then g (~y * 2)
 else f (y, g x)
 end

val ans = f (5, 6)

 f :

ans =

f TR?

3

(C) fun f g x =
 case x of

 SOME (y :: ys) => g y orelse f (fn z => not (g z)) (SOME ys)

 | _ => false

val ans = f (fn x => x >= 10) (SOME [~5, 24, 9, 10, 7, ~19])

 f :

ans =

f TR?

(D) fun f g x b = let
 val (h, y) = g x
 in
 case h of
 SOME h' => h' (f g y b)
 | NONE => b
 end

val ans = f (fn x => case x of
 y :: ys => (SOME (fn z => y + z), ys)
 | [] => (NONE, []))
 [1, 2, 3, 4, 5]
 0

 f :

ans =

f TR?

4

Question 2 (20 points).

Consider the following (incomplete) datatype and function, which are used for all of
parts (A), (B), (C), and (D) (all calls to foo below refer to this foo):

datatype dt = ???

fun foo f t =
 case t of
 A x => if null x then 0 else f (hd x) + foo f (A (tl x))
 | B x => if f x < 0 then f x else f (~x)
 | C (x, y) => if isSome x andalso y x > 0 then valOf x else 0
 | D (x, y) => f x + foo f y

(A) Complete the datatype definition for dt such that the foo function would
type-check.

datatype dt =

 A of __

| B of __

| C of __

| D of __

(B) What is the type of foo?

(* your answer here *)

5

(C) Mark “T” for each of the bindings below that typecheck and evaluate to 341. Mark
“F” otherwise.

Binding = 341? T/F

val a = foo (fn x => x - 1) (A(342))

val b = foo (fn x => x - 1) (A(300, 40, 1))

val c = foo (fn x => x - 1) (B(342))

val d = foo (fn x => ~x) (B(~341))

val e = foo (fn x => ~x) C(SOME 341, SOME 1)

val f = foo (fn x => ~x) (D(~341, A([])))

(D) Mark “T” for each of the bindings below that typecheck and evaluate to 1. Mark “F”
otherwise.

Binding = 1? T/F

val a2 = foo (fn x => x * x) (A[1])

val b2 = foo (fn x => ~x) (A([A([1])]))

val c2 = foo (fn x => x - 1) (A([342, 1]))

val d2 = foo (fn x => x * x) (A[1, ~1, 0])

val e2 = foo (fn x => x * x) (B(1))

val f2 = foo (fn x => x + 1) (C(NONE, SOME 0))

6

Question 3 (20 points).

(A) For each datatype definition below, write the number of values that have that type.
For example,

datatype bool = True | False

has 2 values (True and False), while

datatype nat = Z | S of nat

has infinitely many values (Z, S Z, S (S Z), S (S (S Z)), …). For this
question, assume there are infinitely many values of type int.

Datatype Definition # values

datatype foo =

 A | B | C of foo * foo

datatype bar =

 A of bar | B of bar | C of bar * bar

datatype baz =

 A of baz | B of baz | C of baz list

datatype qux =

 A of bool | B of unit | C of bool * bool

datatype waldo =

 A of int

datatype weird =

 A of (int -> int)

datatype huh =

 A of (huh -> huh)

7

(B) For each pair of bindings b1, b2 in the rows below, in the rightmost column mark:
● E if the bound values are always equivalent
● P if the bound values are equivalent for pure arguments (no side effects)
● N if the bound values are not equivalent

b1 b2 E / P / N

fun f x y =

 x + y

val f =

 fn x => fn y => y + x

fun f (x, y) =

 x + y

val f =

 fn x => fn y => y + x

fun f x y =

 if x then y else true

fun f x y =

 x orelse y

fun f g x = let

 val a = g x + g x

 val b = g 1

in

 a + b

end

fun f g x = let

 val a = g 1

 val b = g x + g x

in

 a + b

end

fun f x y z =

 if x then y else

 if z then x else

 true

fun f x y z =

 (x andalso y) orelse

 (z andalso x)

fun f x y =

 f (x + y)

fun f x y =

 f x + f y

fun f x = let

 fun id x = x

 fun compose f g x = f (g x)

 fun flip f x y = f y x

 fun curry f x y = f (x, y)

 fun uncurry f (x, y) = f x y

in

 (compose uncurry

 (compose flip curry)) id x

end

fun f (x, y) =

 (y, x)

8

Question 4 (20 points).
(A) For an implementation of fold to be correct, it must at least type-check, process
every element of its input, and return the accumulator. For each potential variant of
fold below, put a “T” in the right column if it is correct and “F” otherwise. Assume each
variant is independent (i.e., entered into a fresh REPL).

Candidate fold implementation Correct? T/F

fun fold (xs, acc, f) =

 if null xs then acc else

 fold (tl xs, f (hd xs, acc), f)

val fold =

 fn (xs, acc, f) =>

 if null xs then acc else

 fold (tl xs, f (hd xs, acc), f)

fun fold xs f acc =

 case xs of

 [] => acc

 | x :: xs’ => fold f (f x acc) xs’

fun fold f acc xs =

 case xs of

 [] => acc

 | x :: xs’ => fold f (f x acc) xs’

fun fold xs f acc =

 case xs of

 [] => acc

 | x :: xs’ => fold (xs’, f, f x acc)

fun fold acc xs f =

 case xs of

 x :: xs’ => f (x, fold acc xs’ f)

 | [] => acc

fun fold (xs, acc, f) =>

 if null xs then acc else

 fold (xs, f (hd xs, acc), f)

fun fold f acc xs =

 case xs of

 [] => acc

 | x :: xs’ => fold f (f (hd xs) acc) (tl xs’)

9

 (B) Is it possible to implement fold using map and filter? If so, briefly explain how
you would do it. If not, briefly explain why not. (1-2 sentences)

(C) Is it possible to implement map and filter using fold? If so, briefly explain how
you would do it. If not, briefly explain why not. (1-2 sentences)

10

Question 5 (20 points).
Consider the SML module OE below for working with words in Old English (a language
spoken in England from about the 5th century to the 11th, also known as Anglo-Saxon).
The Old English alphabet contains three non-ASCII characters: æ (“ash”), ð (“eth”), and
þ (“thorn”); it also does not contain the characters j, k, q, v, or z. The module encodes
letters in Old English as either strings or numbers. Alliteration was very important in Old
English poetry, so OE has a function that checks if two words start with the same letter.

signature OLDENGLISH = sig

 datatype OELetter = OEStr of string | OENum of int

 type OEWord = OELetter list

 exception NotOLDENGLISH

 val letter_equal : OELetter * OELetter -> bool

 val is_alliterative : OEWord * OEWord -> bool

end

structure OE :> OLDENGLISH = struct

 datatype OELetter = OEStr of string | OENum of int

 type OEWord = OELetter list

 exception NotOLDENGLISH

 val oe_alphabet =

 ["a","ash","b","c","d","eth","e","f","g","h","i","l"

 , "m","n","o","p","r","s","t","thorn","u","x","w","y"]

 fun str_of_oenum i =

 (* List.nth (xs, i) returns the ith element of xs
 * or raises an exception if xs does not have an ith element *)

 List.nth (oe_alphabet, i)

 fun letter_equal (l1, l2) =

 case (l1, l2) of

 (OEStr s, OENum n) => s = str_of_oenum n

 | (OENum n, OEStr s) => s = str_of_oenum n

 | _ => l1 = l2

 fun is_alliterative(w1, w2) =

 letter_equal (List.hd w1, List.hd w2)

end

https://en.wikipedia.org/wiki/%C3%86
https://en.wikipedia.org/wiki/Eth
https://en.wikipedia.org/wiki/Thorn_(letter)

11

(A) Write a value for word2 of type OE.OEWord that will cause is_alliterative to
raise an exception.

val hwaet = [OEStr "h", OEStr "w", OEStr "ash", OEStr "t"]

val word2 =

(* your code here *)

is_alliterative (hwaet, word2)

(B) It is not possible to bind a value to letter2 of type OE.OELetter that will cause
the call to letter_equal below to raise an exception. Why not?

val thorn = OENum 19

val letter2 = ???

val _ = letter_equal (thorn, letter2)

(* your explanation here *)

12

(C) Although it won't cause exceptions in our current set of functions, it's possible to
create an OELetter that should not be part of the Old English character set, such as
OEStr "k". Write a function that will take a string argument and return only a valid
OELetter.

fun make_OELetter_from_string str =

(* your code here *)

(D) Assume now that OE.OENum should only be an internal representation and not
exposed to the clients. Write a new signature for the module that hides OE.OENum.

signature OLDENGLISH = sig

(* your code here *)

 exception NotOLDENGLISH

 val letter_equal : OELetter * OELetter -> bool

 val is_alliterative : OEWord * OEWord -> bool

end

(* P.S. This is also kind of how Unicode works! *)

13

Optional Bonus (5 points). Do everything else first!

Many programming languages provide a function called printf that takes a string
containing special “format specifiers” followed by some arguments to format and print.
For example, in Java we can use printf like so (string with format specifiers in bold):

 System.out.printf("%s!\n %d\n %f\n", “hello world", 1, 2.0);

Which produces output:

 hello world!
 1

 2.0

Functions like printf are very interesting because the total number of arguments they
take and the types of those arguments depend on the value of their first argument (a
string containing format specifiers). In the example above, the format:

"%s!\n %d\n %f\n"

means that we also need to pass this call to printf a string (because of the specifier
“%s”), an integer (the “%d”), and a floating point number (the “%f”). Notice how printf
“puts its argument into the format string” before printing (e.g., it also prints the “!”,
spaces, and newlines from its first string argument in the example call above).

In SML, every function takes one argument, so we cannot directly implement printf.
That is a bummer.

However, SML does provide some more flexible functions for printing beyond the
print function we have seen in lecture. Recall the type of print:

print : string -> unit

print takes a string and, well, prints it. SML’s TextIO module provides some other
functions and values, including these two which we will use below:

TextIO.stdOut : outstream

TextIO.output : outstream * string -> unit

Calling TextIO.output (TextIO.stdOut, s) is the same as calling print s.

14

MLton is an awesome SML compiler made by an amazing team of hackers. Like many
hackers, they like printf because it is very convenient. They are sad that SML does
not directly support printf.

The MLton team also maintains a very interesting wiki on the web. Consider this module
adapted from an example in the MLton wiki (also included on the separate code sheet).

structure Printf = struct

 fun id x = x

 fun ignore x = ()

 fun on (_, f) = f (fn p => p ()) ignore

 fun fprintf out f = f (out, id)

 val printf = fn z => fprintf TextIO.stdOut z

 fun one ((out, f), make) g =

 g (out, fn r =>

 f (fn p =>

 make (fn s =>

 r (fn () => (p (); TextIO.output (out, s))))))

 fun % x s = one (x, fn f => f s)

 fun specifier to x = one (x, fn f => fn x => f (to x))

 val S = fn z => specifier id z

 val D = fn z => specifier Int.toString z

 val F = fn z => specifier Real.toString z

end

15

Using this module, we can write an SML version of the Java code above:

(* open so we can just write printf instead of Printf.printf *)

open Printf

val () =

 printf S % "!\n " D % "\n " F % "\n"

 on "hello world" 1 2.0

This produces the same output as our Java example:

 hello world!
 1

 2.0

Of course we can write many other examples as well:

val () =

 printf % "(" D % ", " D % ")\n"

 on 1 2

fun prompt (name, acct) =

 printf % "Hello " S % "! Is your account number: " D % "?"

 on name acct

fun display (a, b, c) =

 printf % "{ name = " S % "\n"

 % ", acct = " D % "\n"

 % ", time = " F % "}\n"

 on a b c

(A) SML functions only take one argument, only return one result, and only have one type. Yet,
the calls to printf we showed in the examples above seem to take any number of arguments of
all different kinds of types. How is this possible?

16

(B) What is the type of Printf.on ?

(C) What is the type of Printf.fprintf ?

(D) What is the type of display ?

(E) What do you like most about CSE 341 Winter 2020 so far?

