PAUL G. ALLEN SCHOO

W OF COMPUTER SCIENCE & ENGINEERING

CSE341: Programming Languages

Lecture 26
Course Victory Lap

Brett Wortzman
Spring 2020




Victory Lap

A victory lap is an extra trip around the track
— By the exhausted victors (us) ©

Review course goals
— Slides from Introduction and Course-Motivation

Some big themes and perspectives
— Stuff for five years from now more than for the final

Maybe time for open Q&A

Please fill out the course evaluation!!!

Spring 2020 CSE 341: Programming Languages 2



We've come a long way

First Day of Class (Almost) Last Day of Class
March 30 June 3

Spring 2020 CSE 341: Programming Languages 3



Thank you!

* Huge thank-you to your TAs
— Great team effort
— Really invested in a successful course
— Many message boards posts, assignments graded
— Many hours of teaching and prepping sections
— SUPER hard working and high energy team ©

Spring 2020 CSE 341: Programming Languages



Thank you!

* And a huge thank you to all of you
— Great attitude about a very different view of software
— Good class attendance and questions
— Willingness to work with us during this crazy quarter

« Computer science ought to be challenging and fun!

Spring 2020 CSE 341: Programming Languages



[From Lecture 1]

 Many essential concepts relevant in any programming language
— And how these pieces fit together

« Use ML, Racket, and Ruby languages:
— They let many of the concepts “shine”

— Using multiple languages shows how the same concept can
“look different” or actually be slightly different

— In many ways simpler than Java

« Big focus on functional programming
— Not using mutation (assignment statements) (!)
— Using first-class functions (can’t explain that yet)
— But many other topics too

Spring 2020 CSE 341: Programming Languages 6



[From Lecture 1]

Learning to think about software in this “PL” way will make you a
better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a
lifetime of confidently picking up new languages and ideas

[Somewhat in the style of The Karate Kid movies (1984, 2010)]

AL MACCHI MO Fi NBIT.B SABETH Sl

- "KagratgKid
]

Spring 2020 CSE 341: Programming Languages 7



[From Course Moftivation]

No such thing as a “best” PL
Fundamental concepts easier to teach in some (multiple) PLs

A good PL is a relevant, elegant interface for writing software
— There is no substitute for precise understanding of PL semantics

Functional languages have been on the leading edge for decades

— ldeas have been absorbed by the mainstream, but very slowly

— First-class functions and avoiding mutation increasingly essential
— Meanwhile, use the ideas to be a better C/Java/PHP hacker

Many great alternatives to ML, Racket, and Ruby, but each was
chosen for a reason and for how they complement each other

Spring 2020 CSE 341: Programming Languages 8



[From Course Moftivation]

SML, Racket, and Ruby are a useful combination for us

dynamically typed statically typed
functional SML

object-oriented Java

ML: polymorphic types, pattern-matching, abstract types & modules
Racket. dynamic typing, “good” macros, minimalist syntax, eval
Ruby: classes but not types, very OOP, mixins

[and much more]

Really wish we had more time:

Haskell: laziness, purity, type classes, monads
Prolog: unification and backtracking

[and much more]

Spring 2020 CSE 341: Programming Languages 9



Benefits of No Mutation

[An incomplete list]

1. Can freely alias or copy values/objects: Unit 1
2. More functions/modules are equivalent: Unit 4
3. No need to make local copies of data: Unit 5
4. Depth subtyping is sound: Unit 8

State updates are appropriate when you are modeling a
phenomenon that is inherently state-based

— A fold over a collection (e.g., summing a list) is not!

Spring 2020 CSE 341: Programming Languages 10



Some other highlights

Function closures are really powerful and convenient...
— ... and implementing them is not magic

Datatypes and pattern-matching are really convenient...
— ... and exactly the opposite of OOP decomposition

Sound static typing prevents certain errors...
— ... and is inherently approximate

— ... and combine synergistically

Modularity is really important; languages can help

Spring 2020 CSE 341: Programming Languages

Subtyping and generics allow different kinds of code reuse...

11



More high-level takeaways

« Every choice involves tradeoffs
— Type systems: Convenience vs. protection
— Syntax: Conciseness vs. precision
— Eagerness: Simplicity vs. performance
— Purity: Clarify vs. usefulness

« Just because you can, doesn’'t mean you should (and vice versa!)
— Mutation: makes reasoning harder
— Wildcards/defaults: hides errors
— Depth subtyping: prevents soundness (only if mutation allowed!)

« Programming languages are hard

— Have sympathy next time you wonder “why can’t Language X just
allow this?”

Spring 2020 CSE 341: Programming Languages

12



Wat?

Spring 2020

Wat

@garybernhardt

CSE 341: Programming Languages

13



From the syllabus

Successful course participants will:

Internalize an accurate understanding of what functional and
object-oriented programs mean

Develop the skills necessary to learn new programming
languages quickly

Master specific language concepts such that they can recognize
them in strange guises

Learn to evaluate the power and elegance of programming
languages and their constructs

Attain reasonable proficiency in the ML, Racket, and Ruby
languages and, as a by-product, become more proficient in
languages they already know

Spring 2020 CSE 341: Programming Languages 14



What now?

« Use what you learned whenever you reason about software!
« CSE 401 — Compilers

 CSE 402 — Domain-specific Languages

« CSE 490P — Advanced PLs and Verification (lots of proofs)

« CSE 505 - Principles of PLs (formal semantics, more proofs)

Does PL research design new general-purpose languages?

* Not really; it does cool stuff with same intellectual tools!
« Check out

Summer 2019 CSE341: Programming Languages 15



The End

Spring 2020

Don’t be a stranger!

CSE 341: Programming Languages

16



