PAUL G.ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

CSE341: Programming Languages

Lecture 26
Course Victory Lap

Brett Wortzman
Spring 2020

Victory Lap

A victory lap is an extra trip around the track
— By the exhausted victors (us) ©

Review course goals
— Slides from Introduction and Course-Motivation

Some big themes and perspectives
— Stuff for five years from now more than for the final

Maybe time for open Q&A

Please fill out the course evaluation!!!

Spring 2020 CSE 341: Programming Languages 2

We've come a long way

First Day of Class (Almost) Last Day of Class
March 30 June 3

Spring 2020 CSE 341: Programming Languages 3

Thank you!

* Huge thank-you to your TAs
— Great team effort
Really invested in a successful course
— Many message boards posts, assignments graded
Many hours of teaching and prepping sections
— SUPER hard working and high energy team ©

Spring 2020 CSE 341: Programming Languages 4

Thank you!

* And a huge thank you to all of you
— Great attitude about a very different view of software
— Good class attendance and questions
— Willingness to work with us during this crazy quarter

» Computer science ought to be challenging and fun!

Spring 2020 CSE 341: Programming Languages 5

[From Lecture 1]

« Many essential concepts relevant in any programming language
— And how these pieces fit together

« Use ML, Racket, and Ruby languages:
— They let many of the concepts “shine”

— Using multiple languages shows how the same concept can
“look different” or actually be slightly different

— In many ways simpler than Java

« Big focus on functional programming
— Not using mutation (assignment statements) (!)
— Using first-class functions (can’t explain that yet)
— But many other topics too

Spring 2020 CSE 341: Programming Languages

6/6/2020



[From Lecture 1]

Learning to think about software in this “PL” way will make you a
better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a
lifetime of confidently picking up new languages and ideas

[Somewhat in the style of The Karate Kid movies (1984, 2010)]

Spring 2020 CSE 341: Programming Languages 7

[From Course Motivation]
No such thing as a “best” PL
Fundamental concepts easier to teach in some (multiple) PLs

A good PL is a relevant, elegant interface for writing software
— There is no substitute for precise understanding of PL semantics

Functional languages have been on the leading edge for decades

— ldeas have been absorbed by the mainstream, but very slowly

— First-class functions and avoiding mutation increasingly essential
— Meanwhile, use the ideas to be a better C/Java/PHP hacker

Many great alternatives to ML, Racket, and Ruby, but each was
chosen for a reason and for how they complement each other

Spring 2020 CSE 341: Programming Languages 8

[From Course Motivation]

SML, Racket, and Ruby are a useful combination for us

dynamically typed statically typed
functional Racket SML
object-oriented Ruby Java
ML: polymorphic types, pattern-matching, abstract types & modules
Racket: dynamic typing, “good” macros, minimalist syntax, eval
Ruby: classes but not types, very OOP, mixins
[and much more]

Really wish we had more time:

Haskell: laziness, purity, type classes, monads
Prolog: unification and backtracking

[and much more]

Spring 2020

CSE 341: Programming Languages 9

Benefits of No Mutation

[An incomplete list]

1. Can freely alias or copy values/objects: Unit 1

2. More functions/modules are equivalent: Unit 4

3. No need to make local copies of data: Unit 5

4. Depth subtyping is sound: Unit 8

State updates are appropriate when you are modeling a
phenomenon that is inherently state-based

— A fold over a collection (e.g., summing a list) is not!

Spring 2020 CSE 341: Programming Languages 10

10

Some other highlights

» Function closures are really powerful and convenient...
— ... and implementing them is not magic

» Datatypes and pattern-matching are really convenient...
— ... and exactly the opposite of OOP decomposition

« Sound static typing prevents certain errors...
— ... and is inherently approximate

« Subtyping and generics allow different kinds of code reuse...
— ... and combine synergistically

» Modularity is really important; languages can help

Spring 2020 CSE 341: Programming Languages 11

More high-level takeaways

« Every choice involves tradeoffs
— Type systems: Convenience vs. protection
— Syntax: Conciseness vs. precision
— Eagerness: Simplicity vs. performance
— Purity: Clarify vs. usefulness

« Just because you can, doesn’t mean you should (and vice versa!)
— Mutation: makes reasoning harder
— Wildcards/defaults: hides errors
— Depth subtyping: prevents soundness (only if mutation allowed!)

« Programming languages are hard

— Have sympathy next time you wonder “why can’t Language X just
allow this?”

Spring 2020 CSE 341: Programming Languages 12

11

12

6/6/2020



Wat?

bernhardt

Spring 2020 CSE 341: Programming Languages 13

From the syllabus

Successful course participants will:

« Internalize an accurate understanding of what functional and
object-oriented programs mean

« Develop the skills necessary to learn new programming
languages quickly

« Master specific language concepts such that they can recognize
them in strange guises

« Learn to evaluate the power and elegance of programming
languages and their constructs

« Attain reasonable proficiency in the ML, Racket, and Ruby
languages and, as a by-product, become more proficient in
languages they already know

13

What now?

* Use what you learned whenever you reason about software!
+ CSE 401 - Compilers

« CSE 402 - Domain-specific Languages

+ CSE 490P — Advanced PLs and Verification (lots of proofs)

+ CSE 505 - Principles of PLs (formal semantics, more proofs)

Does PL research design new general-purpose languages?

* Not really; it does cool stuff with same intellectual tools!
+ Check out

Summer 2019 CSE341: Programming Languages 15

15

Spring 2020 CSE 341: Programming Languages 14
Don't be a stranger!
Spring 2020 CSE 341: Programming Languages 16

6/6/2020



