
CSE341: Programming Languages

Lecture 19
Introduction to Ruby and OOP

Brett Wortzman

Spring 2020

Ruby logistics

• Next two sections use the Ruby language

– http://www.ruby-lang.org/

– Installation / basic usage instructions on course website

• Version 2.X.Y required, but differences not so relevant

• Excellent documentation available, much of it free

– So may not cover every language detail in course materials

– http://ruby-doc.org/

– http://www.ruby-lang.org/en/documentation/

– Particularly recommend “Programming Ruby 1.9 & 2.0, The
Pragmatic Programmers’ Guide”

• Not free

Spring 2020 2CSE 341: Programming Languages

Ruby: Our focus

• Pure object-oriented: all values are objects (even numbers)

• Class-based: Every object has a class that determines behavior

– Like Java, unlike Javascript

– Mixins (neither Java interfaces nor C++ multiple inheritance)

• Dynamically typed

• Convenient reflection: Run-time inspection of objects

• Very dynamic: Can change classes during execution

• Blocks and libraries encourage lots of closure idioms

• Syntax, scoping rules, semantics of a “scripting language”

– Variables “spring to life” on use

– Very flexible arrays

Spring 2020 3CSE 341: Programming Languages

Ruby: Not our focus

• Lots of support for string manipulation and regular expressions

• Popular for server-side web applications

– Ruby on Rails

• Often many ways to do the same thing

– More of a “why not add that too?” approach

Spring 2020 4CSE 341: Programming Languages

Where Ruby fits

Note: Racket also has classes and objects when you want them

– In Ruby everything uses them (at least implicitly)

Historical note: Smalltalk also a dynamically typed, class-based,
pure OOP language with blocks and convenient reflection

– Smaller just-as-powerful language

– Ruby less simple, more “modern and useful”

Dynamically typed OOP helps identify OOP's essence by not
having to discuss types

Spring 2020 5CSE 341: Programming Languages

dynamically typed statically typed

functional Racket SML

object-oriented (OOP) Ruby Java

A note on the homework

Next homework is about understanding and extending an existing
program in an unfamiliar language

– Good practice

– Quite different feel than previous homeworks

– Read code: determine what you do and do not (!) need to
understand

Homework requires the Tk graphics library to be installed such that
the provided Ruby code can use it

Spring 2020 6CSE 341: Programming Languages

Getting started

• See lec19_silly.rb file for our getting-started program

• Can run file foo.rb at the command-line with ruby foo.rb

• Or can use irb, which is a REPL

– Run file foo.rb with load "foo.rb"

Spring 2020 7CSE 341: Programming Languages

The rules of class-based OOP

In Ruby:

1. All values are references to objects

2. Objects communicate via method calls, also known as messages

3. Each object has its own (private) state

4. Every object is an instance of a class

5. An object’s class determines the object’s behavior

– How it handles method calls

– Class contains method definitions

Java/C#/etc. similar but do not follow (1) (e.g., numbers, null) and
allow objects to have non-private state

Spring 2020 8CSE 341: Programming Languages

Pure OOP

• Ruby is fully committed to OOP:

Every value is a reference to an object

• Simpler, smaller semantics

• Can call methods on anything

– May just get a dynamic “undefined method” error

• Almost everything is a method call
– Example: 3 + 4

Spring 2020 9CSE 341: Programming Languages

Some examples

• Numbers have methods like +, abs, nonzero?, etc.

• nil is an object used as a “nothing” object

– Like null in Java/C#/C++ except it is an object

– Every object has a nil? method, where nil returns true
for it

– Note: nil and false are “false”, everything else is “true”

• Strings also have a + method

– String concatenation
– Example: "hello" + 3.to_s

Spring 2020 10CSE 341: Programming Languages

All code is methods

• All methods you define are part of a class

• Top-level methods (in file or REPL) just added to Object class

• Subclassing discussion coming later, but:
– Since all classes you define are subclasses of Object, all

inherit the top-level methods

– So you can call these methods anywhere in the program

– Unless a class overrides (roughly-not-exactly, shadows) it by
defining a method with the same name

Spring 2020 11CSE 341: Programming Languages

Defining classes and methods

• Define a class with methods as defined

• Method returns its last expression
– Ruby also has explicit return statement

• Syntax note: Line breaks often required (else need more
syntax), but indentation always only style

Spring 2020 12CSE 341: Programming Languages

class Name
def method_name1 method_args1
expression1

end
def method_name2 method_args2
expression2

end
…

end

Creating and using an object

• ClassName.new creates a new object whose class is
ClassName

• e.m evaluates e to an object and then calls its m method

– Also known as “sends the m message”

– Can also write e.m()

• Methods can take arguments, called like e.m(e1,…,en)

– Parentheses optional in some places, but recommended

Spring 2020 13CSE 341: Programming Languages

Variables

• Methods can use local variables

– Syntax: starts with letter

– Scope is method body

• No declaring them, just assign to them anywhere in method
body (!)

• Variables are mutable, x=e

• Variables also allowed at “top-level” or in REPL

• Contents of variables are always references to objects because
all values are objects

Spring 2020 14CSE 341: Programming Languages

Self

• self is a special keyword/variable in Ruby

– (Same as this in Java/C#/C++)

• Refers to “the current object”

– The object whose method is executing

• So call another method on “same object” with self.m(…)

– Syntactic sugar: can just write m(…)

• Also can pass/return/store “the whole object” with just self

Spring 2020 15CSE 341: Programming Languages

Objects have state

• An object’s state persists

– Can grow and change from time object is created

• State only directly accessible from object’s methods

– Can read, write, extend the state

– Effects persist for next method call

• State consists of instance variables (also known as fields)
– Syntax: starts with an @, e.g., @foo

– “Spring into being” with assignment

• So mis-spellings silently add new state (!)
– Using one not in state not an error; produces nil object

Spring 2020 16CSE 341: Programming Languages

Aliasing

• Creating an object returns a reference to a new object

– Different state from every other object

• Variable assignment (e.g., x=y) creates an alias

– Aliasing means same object means same state

Spring 2020 17CSE 341: Programming Languages

Initialization

• A method named initialize is special

– Is called on a new object before new returns

– Arguments to new are passed on to initialize

– Excellent for creating object invariants

– (Like constructors in Java/C#/etc.)

• Usually good style to create instance variables in initialize

– Just a convention

– Unlike OOP languages that make “what fields an object has”
a (fixed) part of the class definition

• In Ruby, different instances of same class can have
different instance variables

Spring 2020 18CSE 341: Programming Languages

Class variables

• There is also state shared by the entire class

• Shared by (and only accessible to) all instances of the class

– (Like Java static fields)

• Called class variables
– Syntax: starts with an @@, e.g., @@foo

• Less common, but sometimes useful

– And helps explain via contrast that each object has its own
instance variables

Spring 2020 19CSE 341: Programming Languages

Class constants and methods

• Class constants
– Syntax: start with capital letter, e.g., Foo

– Should not be mutated
– Visible outside class C as C::Foo (unlike class variables)

• Class methods (cf. Java/C# static methods)
– Syntax (in some class C):

– Use (of class method in class C):

– Part of the class, not a particular instance of it

Spring 2020 20CSE 341: Programming Languages

def self.method_name (args)
…

end

C.method_name(args)

Who can access what

• We know “hiding things” is essential for modularity and
abstraction

• OOP languages generally have various ways to hide (or not)
instance variables, methods, classes, etc.

– Ruby is no exception

• Some basic Ruby rules here as an example…

Spring 2020 21CSE 341: Programming Languages

Object state is private

• In Ruby, object state is always private

– Only an object’s methods can access its instance variables

– Not even another instance of the same class
– So can write @foo, but not e.@foo

• To make object-state publicly visible, define “getters” / “setters”

– Better/shorter style coming next

Spring 2020 22CSE 341: Programming Languages

def get_foo
@foo

end
def set_foo x
@foo = x

end

Conventions and sugar

• Actually, for field @foo the convention is to name the methods

• Cute sugar: When using a method ending in =, can have space
before the =

• Because defining getters/setters is so common, there is
shorthand for it in class definitions
– Define just getters: attr_reader :foo, :bar, …

– Define getters and setters: attr_accessor :foo, :bar, …

• Despite sugar: getters/setters are just methods

Spring 2020 23CSE 341: Programming Languages

def foo
@foo

end

def foo= x
@foo = x

end

e.foo = 42

Why private object state

• This is “more OOP” than public instance variables

• Can later change class implementation without changing clients

– Like we did with ML modules that hid representation

– And like we will soon do with subclasses

• Can have methods that “seem like” setters even if they are not

• Can have an unrelated class that implements the same methods
and use it with same clients

– See later discussion of “duck typing”

Spring 2020 24CSE 341: Programming Languages

def celsius_temp= x
@kelvin_temp = x + 273.15

end

Method visibility

• Three visibilities for methods in Ruby:
– private: only available to object itself

– protected: available only to code in the class or subclasses

– public: available to all code

• Methods are public by default

– Multiple ways to change a method’s visibility

– Here is one way…

Spring 2020 25CSE 341: Programming Languages

Method visibilities

Spring 2020 26CSE 341: Programming Languages

class Foo =
by default methods public

…
protected
now methods will be protected until
next visibility keyword

…
public
…

private
…

end

One detail

If m is private, then you can only call it via m or m(args)

– As usual, this is shorthand for self.m …

– But for private methods, only the shorthand is allowed

Spring 2020 27CSE 341: Programming Languages

Now (see the code)

• Put together much of what we have learned to define and use a
small class for rational numbers
– Called MyRational because Ruby 1.9 has great built-in

support for fractions using a class Rational

• Will also use several new and useful expression forms

– Ruby is too big to show everything; see the documentation

• Way our class works: Keeps fractions in reduced form with a
positive denominator

– Like an ML-module example earlier in course

Spring 2020 28CSE 341: Programming Languages

Reflection and exploratory programming

• All objects also have methods like:
– methods

– class

• Can use at run-time to query “what an object can do” and
respond accordingly

– Called reflection

• Also useful in the REPL to explore what methods are available

– May be quicker than consulting full documentation

• Another example of “just objects and method calls”

Spring 2020 29CSE 341: Programming Languages

Changing classes

• Ruby programs (or the REPL) can add/change/replace methods
while a program is running

• Breaks abstractions and makes programs very difficult to
analyze, but it does have plausible uses

– Simple example: Add a useful helper method to a class you
did not define

• Controversial in large programs, but may be useful

• For us: Helps re-enforce “the rules of OOP”

– Every object has a class

– A class determines its instances’ behavior

Spring 2020 30CSE 341: Programming Languages

Examples

• Add a double method to our MyRational class

• Add a double method to the built-in FixNum class

• Defining top-level methods adds to the built-in Object class

– Or replaces methods

• Replace the + method in the built-in FixNum class

– Oops: watch irb crash

Spring 2020 31CSE 341: Programming Languages

The moral

• Dynamic features cause interesting semantic questions

• Example:
– First create an instance of class C, e.g., x = C.new

– Now replace method method m in C

– Now call x.m

Old method or new method? In Ruby, new method

The point is Java/C#/C++ do not have to ask the question

– May allow more optimized method-call implementations as a
result

Spring 2020 32CSE 341: Programming Languages

Duck Typing

“If it walks like a duck and quacks like a duck, it's a duck”

– Or don't worry that it may not be a duck

When writing a method you might think, “I need a Foo argument” but
really you need an object with enough methods similar to Foo's
methods that your method works

– Embracing duck typing is always making method calls rather
than assuming/testing the class of arguments

Plus: More code reuse; very OOP approach

– What messages an object receive is “all that matters”

Minus: Almost nothing is equivalent
– x+x versus x*2 versus 2*x

– Callers may assume a lot about how callees are implemented

Spring 2020 33CSE 341: Programming Languages

Duck Typing Example

Spring 2020 34CSE 341: Programming Languages

def mirror_update pt
pt.x = pt.x * (-1)

end

• Natural thought: “Takes a Point object (definition not shown
here), negates the x value”

– Makes sense, though a Point instance method more OOP

• Closer: “Takes anything with getter and setter methods for @x
instance variable and multiplies the x field by -1”

• Closer: “Takes anything with methods x= and x and calls x= with
the result of multiplying result of x and -1”

• Duck typing: “Takes anything with method x= and x where result
of x has a * method that can take -1. Sends result of calling x
the * message with -1 and sends that result to x=”

With our example

• Plus: Maybe mirror_update is useful for classes we did not
anticipate

• Minus: If someone does use (abuse?) duck typing here, then we
cannot change the implementation of mirror_update

– For example, to - pt.x

• Better (?) example: Can pass this method a number, a string, or
a MyRational

Spring 2020 35CSE 341: Programming Languages

def mirror_update pt
pt.x = pt.x * (-1)

end

def double x
x + x

end

