
CSE341: Programming Languages

Lecture 7
First-Class Functions

Brett Wortzman

Spring 2020

What is functional programming?

“Functional programming” can mean a few different things:

1. Avoiding mutation in most/all cases (done and ongoing)

2. Using functions as values (this unit)

…

• Style encouraging recursion and recursive data structures

• Style closer to mathematical definitions

• Programming idioms using laziness (later topic, briefly)

• Anything not OOP or C? (not a good definition)

Not sure a definition of “functional language” exists beyond “makes
functional programming easy / the default / required”

– No clear yes/no for a particular language

Spring 2020 2CSE341: Programming Languages

First-class functions

• First-class functions: Can use them wherever we use values

– Functions are values too

– Arguments, results, parts of tuples, bound to variables,
carried by datatype constructors or exceptions, …

• Most common use is as an argument / result of another function

– Other function is called a higher-order function

– Powerful way to factor out common functionality

Spring 2020 3CSE341: Programming Languages

fun double x = 2*x
fun incr x = x+1
val a_tuple = (double, incr, double(incr 7))

Function Closures

• Function closure: Functions can use bindings from outside the
function definition (in scope where function is defined)

– Makes first-class functions much more powerful

– Will get to this feature in a bit, after simpler examples

• Distinction between terms first-class functions and function
closures is not universally understood

– Important conceptual distinction even if terms get muddled

Spring 2020 4CSE341: Programming Languages

Onward

The next week:

– How to use first-class functions and closures

– The precise semantics

– Multiple powerful idioms

Spring 2020 5CSE341: Programming Languages

Functions as arguments

• We can pass one function as an argument to another function

– Not a new feature, just never thought to do it before

• Elegant strategy for factoring out common code

– Replace N similar functions with calls to 1 function where
you pass in N different (short) functions as arguments

[See the code file for this lecture]

Spring 2020 6CSE341: Programming Languages

fun f (g,…) = … g (…) …
fun h1 … = …
fun h2 … = …
… f(h1,…) … f(h2,…) …

Example
Can reuse n_times rather than defining many similar functions

– Computes f(f(…f(x))) where number of calls is n

Spring 2020 7CSE341: Programming Languages

fun n_times (f,n,x) =
if n=0
then x
else f (n_times(f,n-1,x))

fun double x = x + x
fun increment x = x + 1
val x1 = n_times(double,4,7)
val x2 = n_times(increment,4,7)
val x3 = n_times(tl,2,[4,8,12,16])

fun double_n_times (n,x) = n_times(double,n,x)
fun nth_tail (n,x) = n_times(tl,n,x)

Map

Map is, without doubt, in the “higher-order function hall-of-fame”

– The name is standard (for any data structure)

– You use it all the time once you know it: saves a little space,
but more importantly, communicates what you are doing

– Similar predefined function: List.map

• But it uses currying (coming soon)

Spring 2020 8CSE341: Programming Languages

fun map (f,xs) =
case xs of
[] => []

| x::xs’ => (f x)::(map(f,xs’))

val map : ('a -> 'b) * 'a list -> 'b list

Filter

Filter is also in the hall-of-fame

– So use it whenever your computation is a filter
– Similar predefined function: List.filter

• But it uses currying (coming soon)

Spring 2020 9CSE341: Programming Languages

fun filter (f,xs) =
case xs of
[] => []

| x::xs’ => if f x
then x::(filter(f,xs’))
else filter(f,xs’)

val filter : ('a -> bool) * 'a list -> 'a list

Relation to types

• Higher-order functions are often so “generic” and “reusable” that
they have polymorphic types, i.e., types with type variables

• But there are higher-order functions that are not polymorphic

• And there are non-higher-order (first-order) functions that are
polymorphic

• Always a good idea to understand the type of a function,
especially a higher-order function

Spring 2020 10CSE341: Programming Languages

Types for example

• val n_times : ('a -> 'a) * int * 'a -> 'a

– Simpler but less useful: (int -> int) * int * int -> int

• Two of our examples instantiated 'a with int

• One of our examples instantiated 'a with int list

• This polymorphism makes n_times more useful

• Type is inferred based on how arguments are used (later lecture)
– Describes which types must be exactly something (e.g., int) and

which can be anything but the same (e.g., 'a)

Spring 2020 11CSE341: Programming Languages

fun n_times (f,n,x) =
if n=0
then x
else f (n_times(f,n-1,x))

Polymorphism and higher-order functions

• Many higher-order functions are polymorphic because they are
so reusable that some types, “can be anything”

• But some polymorphic functions are not higher-order
– Example: len : 'a list -> int

• And some higher-order functions are not polymorphic
– Example: times_until_0 : (int -> int) * int -> int

Spring 2020 12CSE341: Programming Languages

fun times_until_zero (f,x) =
if x=0 then 0 else 1 + times_until_zero(f, f x)

Note: Would be better with tail-recursion

Toward anonymous functions
• Definitions unnecessarily at top-level are still poor style:

Spring 2020 13CSE341: Programming Languages

• So this is better (but not the best):

• And this is even smaller scope

– It makes sense but looks weird (poor style; see next slide)

fun trip x = 3*x
fun triple_n_times (f,x) = n_times(trip,n,x)

fun triple_n_times (f,x) =
let fun trip y = 3*y
in

n_times(trip,n,x)
end

fun triple_n_times (f,x) =
n_times(let fun trip y = 3*y in trip end, n, x)

Anonymous functions

• This does not work: A function binding is not an expression

Spring 2020 14CSE341: Programming Languages

• This is the best way we were building up to: an expression form
for anonymous functions

– Like all expression forms, can appear anywhere

– Syntax:
• fn not fun

• => not =

• no function name, just an argument pattern

fun triple_n_times (f,x) =
n_times((fun trip y = 3*y), n, x)

fun triple_n_times (f,x) =
n_times((fn y => 3*y), n, x)

Using anonymous functions

• Most common use: Argument to a higher-order function

– Don’t need a name just to pass a function

• But: Cannot use an anonymous function for a recursive function

– Because there is no name for making recursive calls
– If not for recursion, fun bindings would be syntactic sugar

for val bindings and anonymous functions

Spring 2020 15CSE341: Programming Languages

fun triple x = 3*x

val triple = fn y => 3*y

A style point

Compare:

With:

So don’t do this:

When you can do this:

Spring 2020 16CSE341: Programming Languages

n_times((fn y => tl y),3,xs)

n_times(tl,3,xs)

if x then true else false

(fn x => f x)

Generalizing

Our examples of first-class functions so far have all:

– Taken one function as an argument to another function

– Processed a number or a list

But first-class functions are useful anywhere for any kind of data

– Can pass several functions as arguments

– Can put functions in data structures (tuples, lists, etc.)

– Can return functions as results

– Can write higher-order functions that traverse your own data
structures

Useful whenever you want to abstract over “what to compute with”

– No new language features

Spring 2020 17CSE341: Programming Languages

Returning functions

• Remember: Functions are first-class values

– For example, can return them from functions

• Silly example:

Has type (int -> bool) -> (int -> int)

But the REPL prints (int -> bool) -> int -> int
because it never prints unnecessary parentheses and
t1 -> t2 -> t3 -> t4 means t1->(t2->(t3->t4))

Spring 2020 18CSE341: Programming Languages

fun double_or_triple f =
if f 7
then fn x => 2*x
else fn x => 3*x

Other data structures

• Higher-order functions are not just for numbers and lists

• They work great for common recursive traversals over your own
data structures (datatype bindings) too

• Example of a higher-order predicate:

– Are all constants in an arithmetic expression even numbers?

– Use a more general function of type
(int -> bool) * exp -> bool

– And call it with (fn x => x mod 2 = 0)

Spring 2020 19CSE341: Programming Languages

