W
 PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

CSE341: Programming Languages

Lecture 7
First-Class Functions

Brett Wortzman
Spring 2020

What is functional programming?

"Functional programming" can mean a few different things:

1. Avoiding mutation in most/all cases (done and ongoing)
2. Using functions as values (this unit)

- Style encouraging recursion and recursive data structures
- Style closer to mathematical definitions
- Programming idioms using laziness (later topic, briefly)
- Anything not OOP or C? (not a good definition)

Not sure a definition of "functional language" exists beyond "makes functional programming easy / the default / required"

- No clear yes/no for a particular language

First-class functions

- First-class functions: Can use them wherever we use values
- Functions are values too
- Arguments, results, parts of tuples, bound to variables, carried by datatype constructors or exceptions, ...

```
fun double x = 2*x
fun incr x = x+1
val a_tuple = (double, incr, double(incr 7))
```

- Most common use is as an argument / result of another function
- Other function is called a higher-order function
- Powerful way to factor out common functionality

Function Closures

- Function closure: Functions can use bindings from outside the function definition (in scope where function is defined)
- Makes first-class functions much more powerful
- Will get to this feature in a bit, after simpler examples
- Distinction between terms first-class functions and function closures is not universally understood
- Important conceptual distinction even if terms get muddled

Onward

The next week:

- How to use first-class functions and closures
- The precise semantics
- Multiple powerful idioms

Functions as arguments

- We can pass one function as an argument to another function
- Not a new feature, just never thought to do it before

```
fun f (g,...) = ... g (...) ...
fun h1 ... = ...
fun h2 ... = ...
... f(h1 ,...) ... f(h2 ,...) ...
```

- Elegant strategy for factoring out common code
- Replace N similar functions with calls to 1 function where you pass in N different (short) functions as arguments
[See the code file for this lecture]

Example

Can reuse n_times rather than defining many similar functions

- Computes $\mathrm{f}(\mathrm{f}(\ldots \mathrm{f}(\mathrm{x})))$ where number of calls is n

```
fun n_times (f,n,x) =
    if n=0
    then x
    else f (n_times(f,n-1,x))
```

fun double $\mathrm{x}=\mathrm{x}+\mathrm{x}$
fun increment $x=x+1$
val $\mathrm{x} 1=$ n_times (double, 4,7)
val $x 2$ = n_times (increment, 4,7)
val x 3 = n_times(tl,2,[4,8,12,16])
fun double_n_times (n, x) = n_times (double, n, x)
fun nth_tail (n, x) $=$ n_times $(\mathrm{tl}, \mathrm{n}, \mathrm{x})$

Map

```
fun map (f,xs) =
    case xs of
        [] => []
    | x::xs' => (f x)::(map(f,xs'))
```

val map : ('a -> 'b) * 'a list -> 'b list

Map is, without doubt, in the "higher-order function hall-of-fame"

- The name is standard (for any data structure)
- You use it all the time once you know it: saves a little space, but more importantly, communicates what you are doing
- Similar predefined function: List.map
- But it uses currying (coming soon)

Filter

```
fun filter (f,xs) =
    case xs of
        [] => []
    | x::xs' => if f x
        then x::(filter(f,xs'))
        else filter(f,xs')
```

```
val filter : ('a -> bool) * 'a list -> 'a list
```

Filter is also in the hall-of-fame

- So use it whenever your computation is a filter
- Similar predefined function: List.filter
- But it uses currying (coming soon)

Relation to types

- Higher-order functions are often so "generic" and "reusable" that they have polymorphic types, i.e., types with type variables
- But there are higher-order functions that are not polymorphic
- And there are non-higher-order (first-order) functions that are polymorphic
- Always a good idea to understand the type of a function, especially a higher-order function

Types for example

```
fun n_times (f,n,x) =
    if n=0
    then x
    else f (n_times(f,n-1,x))
```

- val n_times : ('a -> 'a) * int * 'a -> 'a
- Simpler but less useful: (int -> int) * int * int -> int
- Two of our examples instantiated 'a with int
- One of our examples instantiated 'a with int list
- This polymorphism makes n_times more useful
- Type is inferred based on how arguments are used (later lecture)
- Describes which types must be exactly something (e.g., int) and which can be anything but the same (e.g., ' a)

Polymorphism and higher-order functions

- Many higher-order functions are polymorphic because they are so reusable that some types, "can be anything"
- But some polymorphic functions are not higher-order
- Example: len : 'a list -> int
- And some higher-order functions are not polymorphic
- Example: times_until_0 : (int-> int) *int-> int
fun times_until_zero (f, x) $=$ if $\mathbf{x}=0$ then 0 else $1+$ times_until_zero (f, $\mathbf{f} \mathbf{x}$)

Note: Would be better with tail-recursion

Toward anonymous functions

- Definitions unnecessarily at top-level are still poor style:

```
fun trip x = 3*x
fun triple_n_times (f,x) = n_times(trip,n,x)
```

- So this is better (but not the best):

```
fun triple_n_times (f,x) =
    let fun trip y = 3*y
    in
    n_times(trip,n,x)
    end
```

- And this is even smaller scope
- It makes sense but looks weird (poor style; see next slide)

```
fun triple_n_times (f,x) =
    n_times(let fun trip y = 3*y in trip end, n, x)
```


Anonymous functions

- This does not work: A function binding is not an expression

```
fun triple_n_times ( }\textrm{f},\textrm{x})
    n_times((fun trip y = 3*y), n, x)
```

- This is the best way we were building up to: an expression form for anonymous functions

```
fun triple_n_times (f,x) =
    n_times((fn y => 3*y), n, x)
```

- Like all expression forms, can appear anywhere
- Syntax:
- fn not fun
- => not =
- no function name, just an argument pattern

Using anonymous functions

- Most common use: Argument to a higher-order function
- Don't need a name just to pass a function
- But: Cannot use an anonymous function for a recursive function
- Because there is no name for making recursive calls
- If not for recursion, fun bindings would be syntactic sugar for val bindings and anonymous functions

```
fun triple x = 3*x
val triple = fn y => 3*y
```


A style point

Compare:

$$
\text { if } \mathbf{x} \text { then true else false }
$$

With:

$$
(f n x=>f x)
$$

So don't do this:

$$
\text { n_times }((f n y=>t l y), 3, x s)
$$

When you can do this:

$$
\text { n_times }(t l, 3, x s)
$$

Generalizing

Our examples of first-class functions so far have all:

- Taken one function as an argument to another function
- Processed a number or a list

But first-class functions are useful anywhere for any kind of data

- Can pass several functions as arguments
- Can put functions in data structures (tuples, lists, etc.)
- Can return functions as results
- Can write higher-order functions that traverse your own data structures

Useful whenever you want to abstract over "what to compute with"

- No new language features

Returning functions

- Remember: Functions are first-class values
- For example, can return them from functions
- Silly example:

$$
\begin{aligned}
& \text { fun double_or_triple } f= \\
& \text { if } f 7 \\
& \text { then fn } x=>2 * x \\
& \text { else fn } x=>3 * x
\end{aligned}
$$

Has type (int -> bool) -> (int -> int)
But the REPL prints (int -> bool) -> int $->$ int because it never prints unnecessary parentheses and t1 $->$ t2 $->$ t3 $->$ t4 means $t 1->(t 2->(t 3->t 4))$

Other data structures

- Higher-order functions are not just for numbers and lists
- They work great for common recursive traversals over your own data structures (datatype bindings) too
- Example of a higher-order predicate:
- Are all constants in an arithmetic expression even numbers?
- Use a more general function of type

```
    (int -> bool) * exp -> bool
```

- And call it with ($\mathrm{fn} \times \mathrm{x}=>\mathrm{x} \bmod 2=0$)

