CSE341: Programming Languages
Lecture 5
More Datatypes and Pattern-Matching

Brett Wortzman
Spring 2020
Useful examples

Let’s look at some more interesting datatypes …

• Enumerations, including carrying other data

```plaintext
datatype suit = Club | Diamond | Heart | Spade
datatype card_value = Jack | Queen | King |
                    | Ace | Num of int
```

• Alternate ways of identifying real-world things/people

```plaintext
datatype id = StudentNum of int |
            Name of string
            * (string option)
            * string
```
Don’t do this

Unfortunately, bad training and languages that make one-of types inconvenient lead to common *bad style* where each-of types are used where one-of types are the right tool

```plaintext
(* use the student_num and ignore other fields unless the student_num is ≈1 *)

{ student_num : int,
  first       : string,
  middle      : string option,
  last        : string }
```

• Approach gives up all the benefits of the language enforcing every value is one variant, you don’t forget branches, etc.

• And makes it less clear what you are doing
That said...

But if instead the point is that every “person” in your program has a name and maybe a student number, then each-of is the way to go:

```csharp
{ student_num : int option,
  first       : string,
  middle      : string option,
  last        : string }
```
Expression Trees

A more exciting (?) example of a datatype, using self-reference

```
datatype exp = Constant of int
| Negate of exp
| Add of exp * exp
| Multiply of exp * exp
```

An expression in ML of type `exp`:

```
Add (Constant (10+9), Negate (Constant 4))
```

How to picture the resulting value in your head:
Recursion

Not surprising:
Functions over recursive datatypes are usually recursive

fun eval e =
case e of
 Constant i => i
 | Negate e2 => ~ (eval e2)
 | Add(e1,e2) => (eval e1) + (eval e2)
 | Multiply(e1,e2) => (eval e1) * (eval e2)
Putting it together

```ocaml
datatype exp = Constant of int
  | Negate of exp
  | Add of exp * exp
  | Multiply of exp * exp
```

Let’s define \texttt{max_constant : exp \rightarrow int}

Good example of combining several topics as we program:
- Case expressions
- Local helper functions
- Avoiding repeated recursion
- Simpler solution by using library functions

See the \texttt{.sml} file...
Careful definitions

When a language construct is “new and strange,” there is more reason to define the evaluation rules precisely…

… so let’s review datatype bindings and case expressions “so far”
 – *Extensions* to come but won’t invalidate the “so far”
Datatype bindings

```plaintext
datatype t = C1 of t1 | C2 of t2 | ... | Cn of tn
```

Adds type t and constructors C_i of type $t_i \rightarrow t$

- $C_i \ v$ is a value, i.e., the result “includes the tag”

Omit “of t” for constructors that are just tags, no underlying data

- Such a C_i is a value of type t

Given an expression of type t, use case expressions to:

- See which variant (tag) it has
- Extract underlying data once you know which variant
Datatype bindings

\[
\text{case } e \text{ of } p_1 => e_1 \mid p_2 => e_2 \mid \ldots \mid p_n => e_n
\]

- As usual, can use a case expressions anywhere an expression goes
 - Does not need to be whole function body, but often is

- Evaluate \(e\) to a value, call it \(v\)

- If \(p_i\) is the first pattern to match \(v\), then result is evaluation of \(e_i\) in environment “extended by the match”

- Pattern \(C_i(x_1, \ldots, x_n)\) matches value \(C_i(v_1, \ldots, v_n)\) and extends the environment with \(x_1\) to \(v_1\) \(\ldots\) \(x_n\) to \(v_n\)
 - For “no data” constructors, pattern \(C_i\) matches value \(C_i\)
Recursive datatypes

Datatype bindings can describe recursive structures
- Have seen arithmetic expressions
- Now, linked lists:

```haskell
datatype my_int_list = Empty
  | Cons of int * my_int_list

val x = Cons(4,Cons(23,Cons(2008,Empty)))

fun append_my_list (xs,ys) =
  case xs of
    Empty => ys
  | Cons(x,xs') => Cons(x, append_my_list(xs',ys))
```
Options are datatypes

Options are just a predefined datatype binding
 - **NONE** and **SOME** are *constructors*, not just functions
 - So use pattern-matching not `isSome` and `valOf`

```plaintext
fun inc_or_zero intoption =
  case intoption of
    NONE => 0
    | SOME i => i+1
```
Lists are datatypes

Do not use \texttt{hd}, \texttt{tl}, or \texttt{null} either
- \([\]\) and \(::\) are constructors too
- (strange syntax, particularly \textit{infix})

\begin{verbatim}
fun sum_list xs =
 case xs of
 [] => 0
 | x::xs' => x + sum_list xs'

fun append (xs,ys) =
 case xs of
 [] => ys
 | x::xs' => x :: append (xs',ys)
\end{verbatim}
Why pattern-matching

• Pattern-matching is better for options and lists for the same reasons as for all datatypes
 – No missing cases, no exceptions for wrong variant, etc.

• We just learned the other way first for pedagogy
 – Do not use isSome, valOf, null, hd, tl on Homework 2

• So why are null, tl, etc. predefined?
 – For passing as arguments to other functions (next week)
 – Because sometimes they are convenient
 – But not a big deal: could define them yourself
Excitement ahead…

Learn some deep truths about “what is really going on”
 – Using much more syntactic sugar than we realized

• Every val-binding and function-binding uses pattern-matching

• Every function in ML takes exactly one argument

First need to extend our definition of pattern-matching…
Each-of types

So far have used pattern-matching for one of types because we needed a way to access the values

Pattern matching also works for records and tuples:

- The pattern \((x_1, \ldots, x_n)\)
 matches the tuple value \((v_1, \ldots, v_n)\)
- The pattern \(\{f_1=x_1, \ldots, f_n=x_n\}\)
 matches the record value \(\{f_1=v_1, \ldots, f_n=v_n\}\)
 (and fields can be reordered)
Example

This is poor style, but based on what I told you so far, the only way to use patterns

- Works but poor style to have one-branch cases

```haskell
fun sum_triple triple =
    case triple of
        (x, y, z) => x + y + z

fun full_name r =
    case r of
        {first=x, middle=y, last=z} =>
            x ^ " " ^ y ^ " " ^ z
```
Val-binding patterns

• New feature: A val-binding can use a pattern, not just a variable
 – (Turns out variables are just one kind of pattern, so we just told you a half-truth in Lecture 1)

\[
\text{val } p = e
\]

• Great for getting (all) pieces out of an each-of type
 – Can also get only parts out (not shown here)

• Usually poor style to put a constructor pattern in a val-binding
 – Tests for the one variant and raises an exception if a different one is there (like \texttt{hd}, \texttt{tl}, and \texttt{valOf})
Better example

This is okay style
- Though we will improve it again next
- Semantically identical to one-branch case expressions

```ml
fun sum_triple triple = 
  let val (x, y, z) = triple 
  in 
    x + y + z 
  end

fun full_name r = 
  let val {first=x, middle=y, last=z} = r 
  in 
    x ^ " " ^ y ^ " " ^ z 
  end
```
Function-argument patterns

A function argument can also be a pattern
 – Match against the argument in a function call

\[
\text{fun } f \ p = e
\]

Examples (great style!):

\[
\text{fun } \text{sum_triple} \ (x, y, z) = x + y + z
\]

\[
\text{fun } \text{full_name} \ {\text{first}=x, \text{middle}=y, \text{last}=z} = x ^ \ " ^ \ " ^ y ^ \ " ^ \ " ^ z
\]
A new way to go

- For Homework 2:
 - Do not use the # character
 - Do not need to write down any explicit types
A function that takes one triple of type `int*int*int` and returns an `int` that is their sum:

```
fun sum_triple (x, y, z) =
  x + y + z
```

A function that takes three `int` arguments and returns an `int` that is their sum

```
fun sum_triple (x, y, z) =
  x + y + z
```

See the difference? (Me neither.) 😊
The truth about functions

• In ML, every function takes exactly one argument (*)

• What we call multi-argument functions are just functions taking one tuple argument, implemented with a tuple pattern in the function binding
 – Elegant and flexible language design

• Enables cute and useful things you cannot do in Java, e.g.,

```haskell
fun rotate_left (x, y, z) = (y, z, x)
fun rotate_right t = rotate_left (rotate_left t)
```

* “Zero arguments” is the unit pattern () matching the unit value ()
Nested patterns

• We can nest patterns as deep as we want
 – Just like we can nest expressions as deep as we want
 – Often avoids hard-to-read, wordy nested case expressions

• So the full meaning of pattern-matching is to compare a pattern against a value for the “same shape” and bind variables to the “right parts”
 – More precise recursive definition coming after examples
Useful example: zip/unzip 3 lists

fun zip3 lists =
 case lists of
 ([],[],[]) => []
 | (hd1::tl1,hd2::tl2,hd3::tl3) =>
 (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
 | _ => raise ListLengthMismatch

fun unzip3 triples =
 case triples of
 [] => ([],[],[])
 | (a,b,c)::tl =>
 let val (l1, l2, l3) = unzip3 tl
 in
 (a::l1,b::l2,c::l3)
 end

More examples in .sml files
Style

- Nested patterns can lead to very elegant, concise code
 - Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
 - Example: `unzip3` and `nondecreasing`
 - A common idiom is matching against a tuple of datatypes to compare them
 - Examples: `zip3` and `multsign`

- Wildcards are good style: use them instead of variables when you do not need the data
 - Examples: `len` and `multsign`
(Most of) the full definition

The semantics for pattern-matching takes a pattern p and a value v and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If p is a variable x, the match succeeds and x is bound to v.
- If p is $___$, the match succeeds and no bindings are introduced.
- If p is (p_1, \ldots, p_n) and v is (v_1, \ldots, v_n), the match succeeds if and only if p_1 matches v_1, \ldots, p_n matches v_n. The bindings are the union of all bindings from the submatches.
- If p is $C p_1$, the match succeeds if v is $C v_1$ (i.e., the same constructor) and p_1 matches v_1. The bindings are the bindings from the submatch.
- \ldots (there are several other similar forms of patterns)
Examples

- Pattern $a::b::c::d$ matches all lists with ≥ 3 elements

- Pattern $a::b::c::[]$ matches all lists with 3 elements

- Pattern $(a,b),(c,d)::e$ matches all non-empty lists of pairs of pairs