Function definitions

Functions: the most important building block in the whole course
 – Like Java methods, have arguments and result
 – But no classes, this, return, etc.

Example function binding:

(* Note: correct only if y>=0 *)

fun pow (x : int, y : int) =
 if y=0
 then 1
 else x * pow(x,y-1)

Note: The body includes a (recursive) function call: pow(x,y-1)
Example, extended

fun pow (x : int, y : int) =
 if y=0
 then 1
 else x * pow(x,y-1)

fun cube (x : int) =
 pow (x,3)

val sixtyfour = cube 4

val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
 – Example: int * int -> int
 – In expressions, * is multiplication: x * pow(x, y-1)

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for mutual recursion (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
Function bindings: 3 questions

• Syntax: \[
\text{fun } f \ (x_1 : t_1, \ldots, x_n : t_n) = e
\]
 – (Will generalize in later lecture)

• Type-checking:
 – Adds binding \(f : (t_1 \ldots t_n) \rightarrow t \) if:
 – Can type-check body \(e \) to have type \(t \) in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \(x_1 : t_1, \ldots, x_n : t_n \) (arguments with their types)
 • \(f : (t_1 \ldots t_n) \rightarrow t \) (for recursion)

• Evaluation: \textit{A function is a value (sort of)!} (No evaluation yet)
 – Adds \(f \) to environment so \textit{later} expressions can \textit{call} it
 – (Function-call semantics will also allow recursion)
More on type-checking

fun f ($x_1 : t_1$, ..., $x_n : t_n$) = e

• New kind of type: ($t_1 \times ... \times t_n$) \rightarrow t
 – Result type on right
 – The overall type-checking result is to give x_0 this type in rest of program (unlike Java, not for earlier bindings)
 – Arguments can be used only in e (unsurprising)

• Because evaluation of a call to f will “return” result of evaluating e, the “return type” of f is the type of e

• The type-checker “magically” figures out t if such a t exists
 – Later lecture: Requires some cleverness due to recursion
 – More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

Syntax: \(f \ (e_1, \ldots, e_n) \)
- (Will generalize later)
- Parentheses optional if there is exactly one argument

Type-checking:

If:
- \(f \) has some type \((t_1 \times \ldots \times t_n) \rightarrow t\)
- \(e_1 \) has type \(t_1 \), ..., \(e_n \) has type \(t_n \)

Then:
- \(f(e_1, \ldots, e_n) \) has type \(t \)

Example: \(\text{pow}(x, y-1) \) in previous example has type \text{int} \)
Function-calls continued

Evaluation:

1. (Under current dynamic environment,) evaluate \(f \) to a function \(\text{fun } f \ (x_1 : t_1, \ldots, x_n : t_n) = e \)
 - Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n \)

3. Result is evaluation of \(e \) in an environment extended to map \(x_1 \) to \(v_1 \), \ldots, \(x_n \) to \(v_n \)
 - (“An environment” is actually the environment where the function was defined, and includes \(f \) for recursion—more on this later)
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
- Now ways to build up data with multiple parts
- This is essential
- Java examples: classes with fields, arrays

Now:
- *Tuples*: fixed “number of pieces” that may have different types

Then:
- *Lists*: any “number of pieces” that all have the same type

Later:
- Other more general ways to create compound data
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

• Syntax: \((e_1, e_2)\)

• Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 - A new kind of type

• Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 - A pair of values is a value
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Access:

- Syntax: \#1 e and \#2 e

- Type-checking: If e has type ta * tb, then \#1 e has type ta and \#2 e has type tb

- Evaluation: Evaluate e to a pair of values and return first or second piece
 - Example: If e is a variable x, then look up x in environment
Examples

Functions can take and return pairs

fun swap (pr : int*bool) =
 (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
 (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
 (x div y, x mod y)

fun sort_pair (pr : int*int) =
 if (#1 pr) < (#2 pr)
 then pr
 else (#2 pr, #1 pr)
Tuples

Actually, you can have *tuples* with more than two parts
 – A new feature: a generalization of pairs

• \((e_1,e_2,\ldots,e_n)\)
• \(t_a \ast t_b \ast \ldots \ast t_n\)
• \#1 e, \#2 e, \#3 e, ...

Homework 1 uses triples of type \(\text{int*int*int}\) a lot
Nesting

Pairs and tuples can be nested however you want

- Not a new feature: implied by the syntax and semantics

```
val x1 = (7, (true, 9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = ((3, 5), ((4, 8), (0, 0)))
(* (int*int)*((int*int)*(int*int)) *)
```
Lists

• Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

In contrast, a list:
 – Can have any number of elements
 – But all list elements have the same type

Need ways to build lists and access the pieces…
Building Lists

• The empty list is a value:

[]

• In general, a list of values is a value; elements separated by commas:

[v1, v2, ..., vn]

• If e1 evaluates to v and e2 evaluates to a list [v1, ..., vn], then e1::e2 evaluates to [v, v1, ..., vn]

e1::e2 (* pronounced "cons" *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

• **null e** evaluates to **true** if and only if **e** evaluates to **[]**

• If **e** evaluates to **[v1,v2,…,vn]** then **hd e** evaluates to **v1**
 – (raise exception if **e** evaluates to **[]**)

• If **e** evaluates to **[v1,v2,…,vn]** then **tl e** evaluates to **[v2,…,vn]**
 – (raise exception if **e** evaluates to **[]**)
 – Notice result is a list
Type-checking list operations

Lots of new types: For any type t, the type $t\ list$ describes lists where all elements have type t

- Examples: $int\ list$ $bool\ list$ $int\ list\ list$
 $(int\ *\ int)\ list$ $(int\ list\ *\ int)\ list$

- So $[]$ can have type $t\ list$ for any type t
 - SML uses type 'a list to indicate this (“tick a” or “alpha”)

- For $e1: e2$ to type-check, we need a t such that $e1$ has type t and $e2$ has type $t\ list$. Then the result type is $t\ list$

- $null : 'a\ list \rightarrow bool$
- $hd : 'a\ list \rightarrow 'a$
- $tl : 'a\ list \rightarrow 'a\ list$
Example list functions

fun sum_list (xs : int list) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
 if x=0
 then []
 else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd (xs) :: append (tl(xs), ys)
Recursion again

Functions over lists are usually recursive
 – Only way to “get to all the elements”

• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

fun sum_pair_list (xs : (int*int) list) =
 if null xs
 then 0
 else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) =
 if null xs
 then []
 else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) =
 if null xs
 then []
 else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) =
 (sum_list (firsts xs)) + (sum_list (seconds xs))