
4/8/2020

1

CSE341: Programming Languages

Lecture 1
ML Variable Bindings

Semantics
Expressions

Brett Wortzman

Spring 2020

A strange environment

• Next 4-5 weeks will use

– ML language

– Emacs editor

– Read-eval-print-loop (REPL) for evaluating programs

• Need to get things installed and configured

– Either in the department labs or your own machine

– We’ve written thorough instructions (questions welcome)

• Only then can you focus on the content of Homework 1

• Working in strange environments is a CSE life skill

Spring 2020 2CSE 341: Programming Languages

Mindset

• “Let go” of all programming languages you already know

• For now, treat ML as a “totally new thing”

– Time later to compare/contrast to what you know

– Lots of subtle, non-obvious differences that pop up at
unexpected times

– You might be able to get away with “oh that seems kind of
like this thing in [Java]” for a while

– But this will eventually confuse you, slow you down, and
cause you to learn less

• Start with a blank file…

Spring 2020 3CSE 341: Programming Languages

Syntax and semantics

• Syntax is how you write something

• Semantics is what that something means

– Type-checking (before program runs)

– Evaluation (as program runs)

• We will define all ML constructs in terms of these properties

• Side note: I claim semantics are what primarily define a PL and
its pros/cons

– But lots of programmers focus on syntax

Spring 2020 4CSE 341: Programming Languages

A variable binding

• Syntax:
– Keyword val and punctuation = and ;

– Variable x

– Expression e

• Many forms of these, most containing subexpressions

Spring 2020 5CSE 341: Programming Languages

val z = (x + y) + (y + 2); (* comment *)

More generally:

val x = e;

A variable binding

• Semantics:

– Type-checking: if expression type checks, extend static
environment

– Evaluation: evaluate e and extend dynamic environment

Spring 2020 6CSE 341: Programming Languages

val z = (x + y) + (y + 2); (* comment *)

More generally:

val x = e;

4/8/2020

2

ML, carefully, so far

• A program is a sequence of bindings

• Type-check each binding in order using the static environment
produced by the previous bindings

• Evaluate each binding in order using the dynamic environment
produced by the previous bindings

– Dynamic environment holds values, the results of evaluating
expressions

• So far, the only kind of binding is a variable binding

– More soon

Spring 2020 7CSE 341: Programming Languages

Expressions

• We have seen many kinds of expressions:
34 true false x e1+e2 e1<e2

if e1 then e2 else e3

• Can get arbitrarily large since any subexpression can contain
subsubexpressions, etc.

• Every kind of expression has

1. Syntax

2. Type-checking rules

• Produces a type or fails (with a bad error message )
• Types so far: int bool unit

3. Evaluation rules (used only on things that type-check)

• Produces a value (or exception or infinite-loop)

Spring 2020 8CSE 341: Programming Languages

Values

• All values are expressions

• Not all expressions are values

• A value “evaluates to itself” in “zero steps”

• Examples:
– 34, 17, 42 have type int

– true, false have type bool

– () has type unit

Spring 2020 9CSE 341: Programming Languages

Expressions

Values

Variables

• Syntax:

sequence of letters, digits, _, not starting with digit

• Type-checking:

Look up type in current static environment

– If not there fail

• Evaluation:

Look up value in current dynamic environment

Spring 2020 10CSE 341: Programming Languages

Addition

• Syntax:
e1 + e2 where e1 and e2 are expressions

• Type-checking:
If e1 and e2 have type int,

then e1 + e2 has type int

• Evaluation:
If e1 evaluates to v1 and e2 evaluates to v2,

then e1 + e2 evaluates to sum of v1 and v2

Spring 2020 11CSE 341: Programming Languages

Slightly tougher ones

What are the syntax, typing rules, and evaluation rules for

less-than expressions?

What are the syntax, typing rules, and evaluation rules for
conditional expressions?

Spring 2020 12CSE 341: Programming Languages

4/8/2020

3

The foundation we need

We have many more types, expression forms, and binding forms to
learn before we can write “anything interesting”

Syntax, typing rules, evaluation rules will guide us the whole way!

For Homework 1: functions, pairs, conditionals, lists, options, and
local bindings

– Earlier problems require less

Will not add (or need):

– Mutation (a.k.a. assignment): use new bindings instead

– Statements: everything is an expression

– Loops: use recursion instead

Spring 2020 13CSE 341: Programming Languages

