
5/4/2020

1

CSE341: Programming Languages

Interlude
Course Motivation

Brett Wortzman

Spring 2020

Course Motivation

(Did you think I forgot?)

• Why learn the fundamental concepts that appear in all (most?)
languages?

• Why use languages quite different from C, C++, Java, Python?

• Why focus on functional programming?

• Why use ML, Racket, and Ruby in particular?

• Not: Language X is better than Language Y

[You won’t be tested on this stuff]

Spring 2020 2CSE341: Programming Languages

Summary

• No such thing as a “best” PL

• Fundamental concepts easier to teach in some (multiple) PLs

• A good PL is a relevant, elegant interface for writing software

– There is no substitute for precise understanding of PL semantics

• Functional languages have been on the leading edge for decades

– Ideas have been absorbed by the mainstream, but very slowly

– First-class functions and avoiding mutation increasingly essential

– Meanwhile, use the ideas to be a better C/Java/PHP hacker

• Many great alternatives to ML, Racket, and Ruby, but each was
chosen for a reason and for how they complement each other

Spring 2020 3CSE341: Programming Languages

What is the best programming language?

What is the best kind of car?

What is the best kind of shoes?

Spring 2020 4CSE341: Programming Languages

Cars / Shoes

Different cars are good at rather different things:

– Winning a Formula 1 race

– Taking kids to soccer practice

– Off-roading

– Hauling a mattress

Same with shoes:

– Playing basketball

– Going to a formal

– Going to the beach

Spring 2020 5CSE341: Programming Languages

More on cars

• A good mechanic might have a specialty, but also understands how all
cars (not a particular make/model) work

– Would generally not refuse to work on a model they don’t
personally like

– Would definitely not refuse to work on a car based on the color

• A good mechanical engineer really knows how cars work, how to get
the most out of them, and how to design better ones

– Though probably works on one particular car at any given time

• When first learning to fix (or build) a car, probably shouldn’t start with a
modern, fancy, high-tech model

– Why get bogged down in specialized features?

Spring 2020 6CSE341: Programming Languages

5/4/2020

2

Why semantics and idioms

This course focuses as much as it can on semantics and idioms

• Correct reasoning about programs, interfaces, and compilers
requires a precise knowledge of semantics

– Not “I feel that conditional expressions might work like this”

– Not “I like curly braces more than parentheses”

– Much of software development is designing precise
interfaces; what a PL means is a really good example

• Idioms make you a better programmer

– Best to see in multiple settings, including where they shine

– See Java in a clearer light even if I never show you Java

Spring 2020 7CSE341: Programming Languages

Consider Hamlet…

The play Hamlet:

– Is a beautiful work of art

– Teaches deep, eternal truths

– Is the source of some well-known sayings

– Makes you a better person

Continues to be studied centuries later even though:

– The syntax is really annoying to many

– There are more popular movies with some of the same lessons

– Reading Hamlet will not get you a summer internship

Spring 2020 8CSE341: Programming Languages

Are all cars the same?

• Yes:

– Any car can get you from home to school (once you know how to
operate it)

– All built from the same basic components

• Engine, transmission, wheels/axles, etc.

– All have similar interface

• Steering wheels, gas/brake pedals, headlights, etc.

• No:

– Details vary

• E.g. manual v. automatic transmission

– Buttons/knobs/levers in different places

– Some go really fast, some have lots of space, some are very
comfortable, …

Spring 2020 9CSE341: Programming Languages

Are all programming languages the same?

Yes:

– Any input-output behavior implementable in language X is
implementable in language Y [Church-Turing thesis]

– Java, ML, and a language with one loop and three infinitely-
large integers are “the same”

Yes:

– Same fundamentals reappear: variables, abstraction, one-of
types, recursive definitions, …

No:

– The primitive/default/convention in one language is awkward in
another

– Personal preferences in syntax, common idioms, etc.

– Beware “the Turing tarpit”

Spring 2020 10CSE341: Programming Languages

Functional Programming

Why spend 60-80% of course using functional languages:

– Mutation is discouraged

– Higher-order functions are very convenient

– One-of types via constructs like datatypes

Because:

1. These features are invaluable for correct, elegant, efficient
software (great way to think about computation)

2. Functional languages have always been ahead of their time

3. Functional languages well-suited to where computing is going

Most of course is on (1), so a few minutes on (2) and (3) …

Spring 2020 11CSE341: Programming Languages

Ahead of their time

All these were dismissed as “beautiful, worthless, slow things PL
professors make you learn”

• Garbage collection (Java didn’t exist in 1995, PL courses did)
• Generics (List<T> in Java, C#), much more like SML than C++

• XML for universal data representation (like Racket/Scheme/LISP/…)

• Higher-order functions (Ruby, Javascript, C#, now Java, …)

• Type inference (C#, Scala, …)

• Recursion (a big fight in 1960 about this – I’m told)

• …

Spring 2020 12CSE341: Programming Languages

5/4/2020

3

The future may resemble the past

Somehow nobody notices we are right… 20 years later

• “To conquer” versus “to assimilate”

• Societal progress takes time and muddles “taking credit”

• Maybe pattern-matching, currying, hygienic macros, etc. will be next

Spring 2020 13CSE341: Programming Languages

Recent-ish Surge, Part 1

Other popular functional PLs (alphabetized, pardon omissions)

• Clojure http://clojure.org

• Erlang http://www.erlang.org

• F# http://tryfsharp.org

• Haskell http://www.haskell.org

• OCaml http://ocaml.org

• Scala http://www.scala-lang.org

Some “industry users” lists (surely more exist):

• http://www.haskell.org/haskellwiki/Haskell_in_industry

• http://ocaml.org/companies.html

• In general, see http://cufp.org

Spring 2020 14CSE341: Programming Languages

Recent-ish Surge, Part 2

Popular adoption of concepts:

• C#, LINQ (closures, type inference, …)

• Java 8 (closures)

• MapReduce / Hadoop

– Avoiding side-effects essential for fault-tolerance here

• Scala libraries (e.g., Akka, …)

• …

Spring 2020 15CSE341: Programming Languages

Why a surge?

Some guesses:

• Concise, elegant, productive programming

• JavaScript, Python, Ruby helped break the Java/C/C++
hegemony

• Avoiding mutation is the easiest way to make concurrent and
parallel programming easier

– In general, to handle sharing in complex systems

• Sure, functional programming is still a small niche, but there is
so much software in the world today even niches have room

Spring 2020 16CSE341: Programming Languages

The languages together

SML, Racket, and Ruby are a useful combination for us

dynamically typed statically typed

functional Racket SML

object-oriented Ruby Java

ML: polymorphic types, pattern-matching, abstract types & modules

Racket: dynamic typing, “good” macros, minimalist syntax, eval

Ruby: classes but not types, very OOP, mixins

[and much more]

Really wish we had more time:

Haskell: laziness, purity, type classes, monads

Prolog: unification and backtracking

[and much more]

Spring 2020 17CSE341: Programming Languages

But why not…

Instead of SML, could use similar languages easy to learn after:

– OCaml: yes indeed but would have to port all my materials

• And a few small things (e.g., second-class constructors)

– F#: yes and very cool, but needs a .Net platform

• And a few more small things (e.g., second-class
constructors, less elegant signature-matching)

– Haskell: more popular, cooler types, but lazy semantics and
type classes from day 1

Admittedly, SML and its implementations are showing their age
(e.g., andalso and less tool support), but it still makes for a fine
foundation in statically typed, eager functional programming

Spring 2020 18CSE341: Programming Languages

5/4/2020

4

But why not…

Instead of Racket, could use similar languages easy to learn after:

– Scheme, Lisp, Clojure, …

Racket has a combination of:

– A modern feel and active evolution

– “Better” macros, modules, structs, contracts, …

– A large user base and community (not just for education)

– An IDE tailored to education

Could easily define our own language in the Racket system

– Would rather use a good and vetted design

Spring 2020 19CSE341: Programming Languages

But why not…

Instead of Ruby, could use another language:

• Python, Perl, JavaScript are also dynamically typed, but are not
as “fully” OOP, which is what I want to focus on

– Python also does not have (full) closures

– JavaScript also does not have classes but is OOP

• Smalltalk serves my OOP needs

– But implementations merge language/environment

– Less modern syntax, user base, etc.

Spring 2020 20CSE341: Programming Languages

Is this real programming?

• The way we use ML/Racket/Ruby can make them seem almost
“silly” precisely because lecture and homework focus on
interesting language constructs

• “Real” programming needs file I/O, string operations, floating-
point, graphics, project managers, testing frameworks, threads,
build systems, …

– Many elegant languages have all that and more

• Including Racket and Ruby

– If we used Java the same way, Java would seem “silly” too

Spring 2020 21CSE341: Programming Languages

A note on reality

Reasonable questions when deciding to use/learn a language:

• What libraries are available for reuse?

• What tools are available?

• What can get me a job?

• What does my boss tell me to do?

• What is the de facto industry standard?

• What do I already know?

Our course by design does not deal with these questions

– You have the rest of your life for that

– And technology leaders affect the answers

Spring 2020 22CSE341: Programming Languages

