
CSE 341, Spring 2020, Assignment 4
Due: Tuesday, May 19, 2020, 11:59PM

Overview

You will write 10 Racket functions (not counting helper functions) and 1 Racket macro. The first three
problems are “warm-up” exercises for Racket. Subsequent problems dive into streams (4–8), memoization
(9–10), and macros (11). Most problems have short descriptions and short solutions, but short problems
may be difficult. Go slowly and focus on using what we’ve learned in class about thunks, streams, etc.

Some problems require that you use a few standard-library functions that were not used in lecture. See the
Racket documentation at http://docs.racket-lang.org/, particularly The Racket Guide, as necessary —
looking up library functions even in languages new to you is an important skill. It is fine to discuss with
others in the class what library functions are useful and how they work.

Download hw4.zip from the course website which includes the files hw4.rkt and hw4tests.rkt. Add to
these files to complete your assignment.

Provided Test Code:

The code at the top of hw4tests.rkt uses a graphics library to provide a simple, entertaining (?) outlet for
your streams. You need not understand this code (though it is not complicated) or even use it, but it may
make the homework more fun. This is how you use it:

• (open-window) returns a graphics window you can pass as the first argument to place-repeatedly.

• (place-repeatedly window pause stream n) uses the first n values produced by stream. Each
stream element must be a pair where the first value is an integer between 0 and 5 inclusive and the
second value is a string that is the name of an image file (e.g., .jpg). (Sample image files that will work
well are available on the course website. Put them in the same directory as your code.) Every pause

seconds (where pause is a decimal, i.e., floating-point, number), the next stream value is retrieved,
the corresponding image file is opened, and it is placed in the window using the number in the pair to
choose its position in a 2x3 grid as follows:

0 1 2
3 4 5

Two of the provided tests demonstrate how to use place-repeatedly. The provided tests require you to
complete several of the problems, of course. We hope these tests’ expected (visual) behavior is not difficult
for you to figure out.

Problems:

The first three problems will give you some warm-up practice with Racket.

1. Write a function sequence that takes 3 arguments spacing, low, and high, all assumed to be numbers.
Further assume spacing is positive. sequence produces a list of numbers from low to high (including
low and possibly high) separated by spacing and in sorted order. Sample solution: 4 lines. Examples:

Call Result
(sequence 2 3 11) ’(3 5 7 9 11)

(sequence 3 3 8) ’(3 6)

(sequence 1 3 2) ’()

2. Write a function string-append-map that takes a list of strings xs and a string suffix and returns a
list of strings. Each element of the output should be the corresponding element of the input appended

1

http://docs.racket-lang.org/


with suffix (with no extra space between the element and suffix). You must use Racket-library
functions map and string-append. Sample solution: 2 lines.

3. Write a function list-nth-mod that takes a list xs and a number n. If the number is negative,
terminate the computation with (error "list-nth-mod: negative number"). Else if the list is
empty, terminate the computation with (error "list-nth-mod: empty list"). Else return the ith

element of the list where we count from zero and i is the remainder produced when dividing n by the
list’s length. Library functions length, remainder, car, and list-tail are all useful – see the Racket
documentation. Sample solution is 6 lines.

In the next four problems, you will consume, produce, and manipulate streams.

4. Write a function stream-for-k-steps that takes a stream s and a number k. It returns a list holding
the first k values produced by s in order. Assume k is non-negative. Sample solution: 5 lines. Note:
You can test your streams with this function instead of the graphics code.

5. Write a stream funny-number-stream that is like the stream of natural numbers (i.e., 1, 2, 3, ...)
except numbers divisble by 6 are negated (i.e., 1, 2, 3, 4, 5, -6, 7, 8, 9, 10, 11, -12, 13, ...). Remember
a stream is a thunk that when called produces a pair. Here the car of the pair will be a number and
the cdr will be another stream.

6. Write a stream dan-then-dog, where the elements of the stream alternate between the strings "dan.jpg"
and "dog.jpg" (starting with "dan.jpg"). More specifically, dan-then-dog should be a thunk that
when called produces a pair of "dan.jpg" and a thunk that when called produces a pair of "dog.jpg"
and a thunk that when called... etc. Sample solution: 4 lines.

7. Write a function stream-add-one that takes a stream s and returns another stream. If s would
produce v for its ith element, then (stream-add-one s) would produce the pair (1 . v) for its ith

element. Sample solution: 4 lines. Hint: Use a thunk that when called uses s and recursion. Note:
One of the provided tests uses (stream-add-one dan-then-dog) with place-repeatedly.

8. Write a function cycle-lists that takes two lists xs and ys and returns a stream. The lists may or
may not be the same length, but assume they are both non-empty. The elements produced by the
stream are pairs where the first part is from xs and the second part is from ys. The stream cycles
forever through the lists. For example, if xs is ’(1 2 3) and ys is ’("a" "b"), then the stream
would produce, (1 . "a"), (2 . "b"), (3 . "a"), (1 . "b"), (2 . "a"), (3 . "b"), (1 . "a"),
(2 . "b"), etc.

Sample solution is 6 lines and is more complicated than the previous stream problems. Hints: Use one
of the functions you wrote earlier. Use a recursive helper function that takes a number n and calls
itself with (+ n 1) inside a thunk.

The next two problems have you implement your own version of assoc that uses caching (via memoization)
to improve performance.

9. Write a function vector-assoc that takes a value v and a vector vec. It should behave like Racket’s
assoc library function except (1) it processes a vector (Racket’s name for an array) instead of a list,
(2) it allows vector elements not to be pairs in which case it skips them, and (3) it always takes exactly
two arguments. Process the vector elements in order starting from 0. You must use library functions
vector-length, vector-ref, and equal?. Return #f if no vector element is a pair with a car field
equal to v, else return the first pair with an equal car field. Sample solution is 9 lines, using one local
recursive helper function.

2



10. Write a function caching-assoc that takes a list xs and a positive number n and returns a function
that takes one argument v and returns the same thing that (assoc v xs) would return. However, you
should use an n-element cache of recent results to possibly make this function faster than just calling
assoc (if xs is long and a few elements are returned often). The cache should be a vector of length
n that is created by the call to caching-assoc and used-and-possibly-mutated each time the function
returned by caching-assoc is called.

The cache starts empty (all elements #f). When the function returned by caching-assoc is called, it
first checks the cache for the answer. If it is not there, it uses assoc and xs to get the answer and if
the result is not #f (i.e., xs has a pair that matches), it adds the pair to the cache before returning
(using vector-set!). The cache slots are used in a round-robin fashion: the first time a pair is added
to the cache it is put in position 0, the next pair is put in position 1, etc. up to position n − 1 and
then back to position 0 (replacing the pair already there), then position 1, etc.

Hints:

• In addition to a variable for holding the vector whose contents you mutate with vector-set!,
use a second variable to keep track of which cache slot will be replaced next. After modifying the
cache, increment this variable (with set!) or set it back to 0.

• To test your cache, it can be useful to add print expressions so you know when you are using the
cache and when you are not. But remove these print expressions before submitting your code.

• Sample solution is 15 lines.

Finally, you will write a Racket macro.

11. Define a macro that is used like (while-greater e1 do e2) where e1 and e2 are expressions and
while-greater and do are syntax (keywords). The macro should do the following:

• It evaluates e1 exactly once.

• It evaluates e2 at least once.

• It keeps evaluating e2 until and only until the result is not a number greater than the result of
the evaluation of e1 .

• Assuming evaluation terminates, the result is #t.

• Assume e1 and e2 produce numbers; your macro can do anything or fail mysteriously otherwise.

Hint: Define and use a recursive thunk. Sample solution is 9 lines. Example:

(define a 7)

(while-greater 2 do (begin (set! a (- a 1)) (print "x") a))

(while-greater 2 do (begin (set! a (- a 1)) (print "x") a))

Evaluating the second line will print "x" 5 times and change a to be 2. So evaluating the third line
will print "x" 1 time and change a to be 1.

12. Challenge Problem: Write cycle-lists-challenge. It should be equivalent to cycle-lists, but
its implementation must be more efficient. In particular, for each time the stream produces a new
value, the code must perform only two car operations and two cdr operations, including operations
performed by any function calls. So, for example, you cannot use length because it uses cdr multiple
times to compute a list’s length.

3



13. Challenge Problem: Write caching-assoc-lru, which is like caching-assoc except it uses a policy
of “least recently used” for deciding which cache slot to replace. That is, when replacing a pair in
the cache, you must choose the pair that was least recently returned as an answer. Doing so requires
maintaining extra state.

Testing

In addition to implementing the functions described above, you must write a suite of tests to verify that
your functions work correctly. Tests should be written using the approach shown in section, and should be
comprehensive enough to fully verify that your functions work as indicated. Be sure to consider edge cases
and unusual (but valid) inputs. Truly exceptional test suites may receive a small amount of extra credit.

Assessment

To receive full credit, your solutions should be:

• Functionally correct

• Written in good style according to the style guide, including indentation and line breaks

• Written using only features discussed in class through Wednesday, May 13 (Lecture 15).

• Written without using mutation, except for problems 10 and 13. (You will also need mutation to test
problem 11.)

• Written without using Racket’s built-in streams. (These do not work the same way we are using
streams.)

Turn-in Instructions

• Add all your solutions to the main problems and challenge problems (if you worked on them) to the
file hw4.rkt.

• Add all your tests to the file hw4tests.rkt.

• Follow the link on the course website to submit your files to Gradescope.

• The Gradescope autograder will confirm that you have submitted the correct file and that your code
compiles. Submissions that do not compile will receive a 15% penalty!

4

https://courses.cs.washington.edu/courses/cse341/20sp/style.html
https://courses.cs.washington.edu/courses/cse341/20sp/homework.html

