
CSE 341, Spring 2020, Assignment 3
Due: Thursday, April 30 Saturday, May 2, 11:59PM

Overview

You will define several SML functions. Many will be very short because they will use other higher-order
functions. You may use functions in ML’s library; the problems point you toward the useful functions and
often require that you use them. The sample solution is about 120 lines, including the provided code,
but not including the challenge problem. Note that problems with 1-line answers can still be challenging,
perhaps because the answers are intended to be so short.

Download hw3.sml from the course website and add your solutions to that file.

Problems

1. Write a function only_lowercase that takes a string list and returns a string list that has only
the strings in the argument that start with an lowercase letter. Assume all strings have at least 1
character. Use List.filter, Char.isLower, and String.sub to make a 1-2 line solution.

2. Write a function longest_string1 that takes a string list and returns the longest string in the
list. If the list is empty, return "". In the case of a tie, return the string closest to the beginning of the
list. Use foldl, String.size, and no recursion (other than the implementation of foldl is recursive).

3. Write a function longest_string2 that is exactly like longest_string1 except in the case of ties
it returns the string closest to the end of the list. Your solution should be almost an exact copy of
longest_string1. Still use foldl and String.size.

4. Write a function longest_string_helper that has type (int * int -> bool) -> string list -> string

(notice the currying). This function will look a lot like longest_string1 and longest_string2 but
is more general because it takes a function as an argument. If longest_string_helper is passed a
function that behaves like > (so it returns true exactly when its first argument is stricly greater than
its second), then the function returned should have the same behavior as longest_string1.

5. Write functions longest_string3, and longest_string4 such that:

• longest_string3 has the same behavior as longest_string1 and longest_string4 has the
same behavior as longest_string2.

• longest_string3 and longest_string4 are both defined with val-bindings and partial applica-
tions of longest_string_helper.

6. Write a function longest_lowercase that takes a string list and returns the longest string in the
list that begins with an lowercase letter, or "" if there are no such strings. Assume all strings have at
least 1 character. Use a val-binding and the ML library’s o operator for composing functions. Resolve
ties like in problem 2.

7. Write a function caps_no_X_string that takes a string and returns the string that is like the
input except every letter is capitalized and every “x” or “X” is removed (e.g., “aBxXXxDdx” becomes
“ABDD”). Use a val binding, ML’s o operator, 2–3 library functions in the String module, 1 in the
Char module, and 1–2 in the List module. Browse the module documentation to find the most useful
functions. Note ML has strange syntax for character literals, e.g., #"A".

1

The next two problems involve writing functions over lists that will be useful in later problems.

8. Write a function first_answer of type (’a -> ’b option) -> ’a list -> ’b (notice the 2 argu-
ments are curried). The first argument should be applied to elements of the second argument in order
until the first time it returns SOME v for some v and then v is the result of the call to first_answer.
If the first argument returns NONE for all list elements, then first_answer should raise the exception
NoAnswer. Hints: Sample solution is 5 lines and does nothing fancy.

9. Write a function all_answers of type (’a -> ’b list option) -> ’a list -> ’b list option

(notice the 2 arguments are curried). The first argument should be applied to elements of the second
argument. If it returns NONE for any element, then the result for all_answers is NONE. Else the
calls to the first argument will have produced SOME lst1, SOME lst2, ... SOME lstn and the result of
all_answers is SOME lst where lst is lst1, lst2, ..., lstn appended together (order doesn’t matter).
Hints: The sample solution is 8 lines. It uses a helper function with an accumulator and uses @. Note
all_answers f [] should evaluate to SOME [].

The remaining problems use these type definitions, which are inspired by the type definitions an ML imple-
mentation would use to implement pattern matching:

datatype pattern = WildcardP | VariableP of string | UnitP | ConstantP of int

| ConstructorP of string * pattern | TupleP of pattern list

datatype valu = Constant of int | Unit | Constructor of string * valu | Tuple of valu list

Given valu v and pattern p, either p matches v or not. If it does, the match produces a list of string * valu

pairs; order in the list does not matter. The rules for matching should be unsurprising:

• WildcardP matches everything and produces the empty list of bindings.

• VariableP s matches any value v and produces the one-element list holding (s,v).

• UnitP matches only Unit and produces the empty list of bindings.

• ConstantP 17 matches only Constant 17 and produces the empty list of bindings (and similarly for
other integers).

• ConstructorP(s1,p) matches Constructor(s2,v) if s1 and s2 are the same string (you can compare
them with =) and p matches v. The list of bindings produced is the list from the nested pattern match.
We call the strings s1 and s2 the constructor name.

• TupleP ps matches a value of the form Tuple vs if ps and vs have the same length and for all i, the
ith element of ps matches the ith element of vs. The list of bindings produced is all the lists from the
nested pattern matches appended together.

• Nothing else matches.

The next four problems use the pattern datatype but are not really about pattern-matching. They also use
the function g provided to you.

10. In an ML comment, describe in a few English sentences the arguments that g takes and what g computes
(not how g computes it, though you will have to understand that to determine what g computes). Note
you write no code for this subproblem.

11. Use g to define a function count_wildcards that takes a pattern and returns how many WildcardP

patterns it contains.

2

12. Use g to define a function count_wild_and_variable_lengths that takes a pattern and returns the
number of Wildcard patterns it contains plus the sum of the string lengths of all the variables in the
variable patterns it contains. (Use String.size. We care only about variable names; the constructor
names are not relevant.)

13. Use g to define a function count_a_var that takes a string and a pattern (as a pair) and returns the
number of times the string appears as a variable in the pattern. We care only about variable names;
the constructor names are not relevant.

In the last three functions, you will implement the simplified version of ML pattern matching described
above using the pattern and valu datatypes.

14. Write a function check_pat that takes a pattern and returns true if and only if all the variables
appearing in the pattern are distinct from each other (i.e., use different strings). The constructor
names are not relevant. Hints: The sample solution uses two helper functions. The first takes a
pattern and returns a list of all the strings it uses for variables. Using foldl with a function that uses
@ is useful in one case. The second takes a list of strings and decides if it has repeats. List.exists may
be useful. Sample solution is 15 lines. These are hints: We are not requiring foldl and List.exists

here, but they make it easier.

15. Write a function match that takes a valu * pattern and returns a (string * valu) list option,
namely NONE if the pattern does not match and SOME lst where lst is the list of bindings if it does.
Note that if the value matches but the pattern has no patterns of the form VariableP s, then the
result is SOME []. Hints: Sample solution has one case expression with 7 branches. The branch for
tuples uses all_answers and ListPair.zip. Sample solution is 13 lines. Remember to look above for
the rules for what patterns match what values, and what bindings they produce. These are hints: We
are not requiring all_answers and ListPair.zip here, but they make it easier.

16. Write a function first_match that takes a value and a list of patterns and returns a
(string * valu) list option, namely NONE if no pattern in the list matches or SOME lst where
lst is the list of bindings for the first pattern in the list that matches. Use first_answer and a
handle-expression. Hints: Sample solution is 3 lines.

17. (Challenge Problem) Write a function typecheck_patterns that “type-checks” a pattern list.
Types for our made-up pattern language are defined by:

datatype typ = AnythingT (* any type of value is okay *)

| UnitT (* type for Unit *)

| IntT (* type for integers *)

| TupleT of typ list (* tuple types *)

| DatatypeT of string (* some named datatype *)

typecheck_patterns should have type ((string * string * typ) list) * (pattern list) -> typ option.
The first argument contains elements that look like ("foo","bar",IntT), which means constructor
foo makes a value of type Datatype "bar" given a value of type IntT. Assume list elements all have
different first fields (the constructor name), but there are probably elements with the same second field
(the datatype name). Under the assumptions this list provides, you “type-check” the pattern list

to see if there exists some typ (call it t) that all the patterns in the list can have. If so, return SOME t,
else return NONE.

Continued on next page...

3

You must return the “most lenient” type that all the patterns can have. For example, given patterns
TupleP [VariableP "x", VariableP "y"] and TupleP [WildcardP, WildcardP], return
SOME (TupleT [AnythingT, AnythingT]) even though they could both have type TupleT [IntT, IntT].
As another example, if the only patterns are TupleP [WildcardP, WildcardP] and
TupleP [WildcardP, TupleP [WildcardP, WildcardP]], you must return
SOME (TupleT [AnythingT, TupleT[AnythingT, AnythingT]]).

Summary

Evaluating a correct homework solution should generate these bindings, in addition to the bindings from the
code provided to you.

val only_lowercase = fn : string list -> string list

val longest_string1 = fn : string list -> string

val longest_string2 = fn : string list -> string

val longest_string_helper = fn : (int * int -> bool) -> string list -> string

val longest_string3 = fn : string list -> string

val longest_string4 = fn : string list -> string

val longest_lowercase = fn : string list -> string

val caps_no_X_string = fn : string -> string

val first_answer = fn : (’a -> ’b option) -> ’a list -> ’b

val all_answers = fn : (’a -> ’b list option) -> ’a list -> ’b list option

val count_wildcards = fn : pattern -> int

val count_wild_and_variable_lengths = fn : pattern -> int

val count_a_var = fn : string * pattern -> int

val check_pat = fn : pattern -> bool

val match = fn : valu * pattern -> (string * valu) list option

val first_match = fn : valu -> pattern list -> (string * valu) list option

Of course, generating these bindings does not guarantee that your solutions are correct.

Testing

In addition to implementing the functions described above, you must write a suite of tests to verify that
your functions work correctly. Tests should be written using the approach shown in section, and should be
comprehensive enough to fully verify that your functions work as indicated. Be sure to consider edge cases
and unusual (but valid) inputs. Truly exceptional test suites may receive a small amount of extra credit.

Assessment

To receive full credit, your solutions should be:

• Functionally correct

• Written in good style according to the style guide, including indentation and line breaks

• Written using only features discussed in class through Monday, April 27 (Lecture 9).

• Written without using null, hd, tl, isSome, valOf, or any function named with the # character.
(You may use # for character literals.)

Turn-in Instructions

• Add all your solutions to the main problems and challenge problems (if you worked on them) to the
file hw3.sml.

• Put all your tests in another file called hw3tests.sml.

4

https://courses.cs.washington.edu/courses/cse341/20sp/style.html

• Follow the link on the course website to submit your files to Gradescope.

• The Gradescope autograder will confirm that you have submitted the correct file and that your code
compiles. Submissions that do not compile will receive a 15% penalty!

5

https://courses.cs.washington.edu/courses/cse341/20sp/homework.html

