
CSE 341
Section 4

Higher-Order Functions and Closures
Winter 2019

Learning Objectives

● The “Value Restriction”
● Higher-Order Functions (QC, ~35 min)

○ Understand higher order functions and their
expressiveness

○ Become familiar with anonymous functions
● Currying and partial application (~5 min)

Type Inference

How does type inference work?
- A good answer is outside the scope of this class.
- For weird enough cases, this is a topic of active

research.

Type Inference

How does type inference work in SML?
- Still mostly outside the scope of this class
- We’ll talk about it on Monday
- Today, we’ll go over an SML-specific quirk

The Value Restriction

Let’s hop into Emacs

Key Concepts Review

• Higher-order functions
• Pass functions around like any data
• Closures: functions capture references to their

environment
• Lexical scoping: variables are captured at time of

creation
• Higher-order function idioms:

• foldl, map, etc.
• Polymorphic functions

• Functions that are generic over the type of arguments

Higher-order functions

Functions are no different from any program data.

An extremely powerful feature! The “defining
feature” of functional programming.*

* debatable

Higher-order functions

QuickCheck time! (~5 minutes, ungraded)

Speak with a friend if you like

Higher-order functions

What is the type of fold?

In what order does fold process its elements?

Is there the one true type for a fold function?
Why/Why not?

Higher-Order Functions

Let’s look at an association list representation of a
map and some operations (Emacs)

Association Lists

k1 v1 k2 v2 k3 v3 ...

Closure-Based Representation

• The function (map!) returned by add captures:
• the inserted key (k)
• the inserted value (v)
• the original map (m)

Closure-Based Representation

fn =>
...

k1

v1 m

fn =>
...

k2

v2 m’

fn =>
...

k3

v3 m’’

...

Does this look familiar?

Closure-Based Representation

fn =>
...

k1

v1 m

fn =>
...

k2

v2 m’

fn =>
...

k3

v3 m’’

...

k1 v1 k2 v2 k3 v3 ...

Benefits of this representation

• Remove is O(1)
• Map is O(1) (kinda!)

• Only ends up transforming values accessed
later (emacs)

• Although the result can be more expensive
computationally (why?)

