Function definitions

Functions: the most important building block in the whole course
– Like Java methods, have arguments and result
– But no classes, this, return, etc.

Example function binding:

\[
\begin{align*}
\text{fun pow}(x : \text{int}, y : \text{int}) = \\
\quad \text{if } y = 0 \text{ then } 1 \\
\quad \text{else } x \times \text{pow}(x, y-1)
\end{align*}
\]

Note: The body includes a (recursive) function call: \text{pow}(x, y-1)

Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax
 – Example: int * int -> int
 – In expressions, * is multiplication: \text{x \times pow(x, y-1)}

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for mutual recursion (later)

Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions

Function bindings: 3 questions

• Syntax: \text{fun x0 (x1 : t1, ..., xn : tn) = e}
 – (Will generalize in later lecture)

• Evaluation: A function is a value! (No evaluation yet)
 – Adds x0 to environment so later expressions can call it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adding binding \text{x0 : (t1 \times ... \times tn)} -> t : f:
 – Can type-check body \text{e} to have type \text{t} in the static environment containing:
 – “Enclosing” static environment (earlier bindings)
 – \text{x1 : t1, ..., xn : tn} (arguments with their types)
 – \text{x0 : (t1 \times ... \times tn)} -> t (for recursion)
More on type-checking

- New kind of type: \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - Result type on right
 - The overall type-checking result is to give \(x_0\) this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in \(e\) (unsurprising)
- Because evaluation of a call to \(x_0\) will return result of evaluating \(e\), the return type of \(x_0\) is the type of \(e\)
- The type-checker "magically" figures out \(t\) if such a \(t\) exists
 - Later lecture: Requires some cleverness due to recursion
 - More magic after hw1: Later can omit argument types too

Function Calls

A new kind of expression: 3 questions

- Syntax: \(x^0 (e_1, \ldots, e_n)\)
 - (Will generalize later)
 - Parentheses optional if there is exactly one argument

- Type-checking:
 - If:
 - \(e_0\) has some type \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - \(e_1\) has type \(t_1\), \ldots, \(e_n\) has type \(t_n\)
 - Then:
 - \(e_0(e_1, \ldots, e_n)\) has type \(t\)

Example: \(\text{pow}(x, y-1)\) in previous example has type \(\text{int}\)

Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
- Now ways to build up data with multiple parts
- This is essential
- Java examples: classes with fields, arrays

- Now:
 - Tuples: fixed "number of pieces" that may have different types
 - Lists: any "number of pieces" that all have the same type
- Later:
 - Other more general ways to create compound data

Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

- Syntax: \((e_1, e_2)\)
- Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 - A pair of values is a value
- Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 - A new kind of type
Examples

Functions can take and return pairs

```haskell
fun swap (pr : int*bool) =
  (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
  (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
  (x div y, x mod y)

fun sort_pair (pr : int*int) =
  if (#1 pr) < (#2 pr)
  then pr
  else (#2 pr, #1 pr)
```

Tuples

Actually, you can have tuples with more than two parts

- A new feature: a generalization of pairs
 - (e1, e2, ..., en)
 - t1 * t2 * ... * tn
 - #1 e, #2 e, #3 e, ...

Homework 1 uses triples of type int*int*int a lot

Nesting

Pairs and tuples can be nested however you want

- Not a new feature: implied by the syntax and semantics

```haskell
val x1 = (7, (true, 9)) (* int * (bool * int) *)
val x2 = $1 (x2 x1) (* bool *)
val x3 = (x2 x1) (* bool * int *)
val x4 = ((3, 5), ((4, 8), (0, 0))) (* (int * int) * (int * int) * int *)
```

Lists

- Despite nested tuples, the type of a variable still "commits" to a particular "amount" of data

In contrast, a list:

- Can have any number of elements
- But all list elements have the same type

Need ways to build lists and access the pieces...

Building Lists

- The empty list is a value:
  ```haskell
  []
  ```
- In general, a list of values is a value; elements separated by commas:
  ```haskell
  [v1, v2, ..., vn]
  ```
- If e1 evaluates to v and e2 evaluates to a list [v1, ..., vn], then e1 :: e2 evaluates to [v, ..., vn] (pronounced "cons")

Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- null e evaluates to true if and only if e evaluates to []
- hd e evaluates to [v1, v2, ..., vn] then hd e evaluates to v1 (raise exception if e evaluates to [])
- tl e evaluates to [v2, ..., vn] (raise exception if e evaluates to [])
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type \(t \), the type \(t \) list describes lists where all elements have type \(t \)
- Examples: int list, bool list, int list list, (int * int) list, (int list * int) list

- So [] can have type \(t \) list for any type
- SML uses type \('a \) list to indicate this ("quote a" or "alpha")
- For \(e1::e2 \) to type-check, we need a \(t \) such that \(e1 \) has type \(t \) and \(e2 \) has type \(t \) list. Then the result type is \(t \) list
- \(\text{null} : 'a \) list \(\rightarrow 'a \)
- \(\text{hd} : 'a \) list \(\rightarrow 'a \)
- \(\text{tl} : 'a \) list \(\rightarrow 'a \) list

Example list functions

fun sum_list \((xs : \text{int list})\) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown \((x : \text{int})\) =
 if \(x=0 \)
 then []
 else x :: countdown (x-1)

fun append \((xs : \text{int list}, ys : \text{int list})\) =
 if null xs
 then ys
 else hd (xs) :: append (tl(xs), ys)

Recursion again

Functions over lists are usually recursive
- Only way to "get to all the elements"
- What should the answer be for the empty list?
- What should the answer be for a non-empty list?
- Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
- You create a list out of smaller lists

Lists of pairs

Processing lists of pairs requires no new features. Examples:

fun sum_pair_list \((xs : (\text{int*int}) \text{ list})\) =
 if null xs
 then 0
 else \#1(hd xs) + \#2(hd xs) + sum_pair_list(tl xs)

fun firsts \((xs : (\text{int*int}) \text{ list})\) =
 if null xs
 then []
 else \#1(hd xs) :: firsts(tl xs)

fun seconds \((xs : (\text{int*int}) \text{ list})\) =
 if null xs
 then []
 else \#2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 \((xs : (\text{int*int}) \text{ list})\) =
 (sum_list (firsts xs)) + (sum_list (seconds xs))