PAUL G. ALLEN SCHOO

w OF COMPUTER SCIENCE & ENGINEERING

CSE341: Programming Languages

Lecture 26
Course Victory Lap

Brett Wortzman
Summer 2019

Slides originally created by Dan Grossman




Final Exam

As also indicated in forthcoming email:

« This Friday, 12:00-1:00PM

* Intention is to focus primarily on material since the midterm
— Including topics on homeworks and not on homeworks
— May also have a little ML, just like the course has had

* You will need to write code and English

« Sample exams were written for two hours; our exam will include
a subset of the material

Summer 2019 CSE341: Programming Languages



Victory Lap

A victory lap is an extra trip
around the track
— By the exhausted victors (us) ©

Review course goals
— Slides from Introduction and (skipped) Course- Motlvatlon

Some big themes and perspectives
— Stuff for five years from now more than for the final

Please do your course evaluations!!!

Summer 2019 CSE341: Programming Languages 3



[From Lecture 1]

 Many essential concepts relevant in any programming language
— And how these pieces fit together

« Use ML, Racket, and Ruby languages:
— They let many of the concepts “shine”

— Using multiple languages shows how the same concept can
“look different” or actually be slightly different

— In many ways simpler than Java

« Big focus on functional programming
— Not using mutation (assignment statements) (!)
— Using first-class functions (can’t explain that yet)
— But many other topics too

Summer 2019 CSE341: Programming Languages 4



[From Lecture 1]

Learning to think about software in this “PL” way will make you a
better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a
lifetime of confidently picking up new languages and ideas

[Somewhat in the style of The Karate Kid movies (1984, 2010)]

AL MACCHI MO Fi NBIT.B SABETH Sl

- "KagratgKid
]

Summer 2019 CSE341: Programming Languages 5



What is the best programming language?

What characteristics would you want in a best
programming language?

Summer 2019 CSE341: Programming Languages



What is the best kind of car?

What is the best kind of shoes?

Summer 2019 CSE341: Programming Languages



Cars/ Shoes

Cars are used for rather different things:
— Winning a Formula 1 race
— Taking kids to soccer practice
— Off-roading
— Hauling a mattress
— Getting the wind in your hair
— Staying dry in the rain

Shoes:
— Playing basketball
— Going to a formal
— Going to the beach

Summer 2019 CSE341: Programming Languages



More on cars

« A good mechanic might have a specialty, but also understands
how “cars” (not a particular make/model) work

— The paint color isn’t essential (syntax)

« A good mechanical engineer really knows how cars work, how
to get the most out of them, and how to design better ones

— | don’t have a favorite kind of car or a favorite PL

 Tolearn how car pieces interact, it may make sense to start with
a classic design rather than the latest model

— A popular car may not be best
— May especially not be best for learning how cars work

Summer 2019 CSE341: Programming Languages 9



All cars are the same

 To make it easier to rent cars, it is great that they all have
steering wheels, brakes, windows, headlights, etc.

— Yet it is still uncomfortable to learn a new one
— Can you be a great driver if you only ever drive one car?

 And maybe PLs are more like cars, trucks, boats, and bikes

 So are all PLs really the same...

Summer 2019 CSE341: Programming Languages

10



Are all languages the same?

Yes:
— Any input-output behavior implementable in language X is
implementable in language Y [Church-Turing thesis]
— Java, ML, and a language with one loop and three infinitely-
large integers are “the same”
Yes:
— Same fundamentals reappear: variables, abstraction, one-of
types, recursive definitions, ...
No:

— The human condition vs. different cultures
(travel to learn more about home)

— The primitive/default in one language is awkward in another
— Beware “the Turing tarpit” and “Maslow’s Hammer”

Summer 2019 CSE341: Programming Languages 11



Functional Programming

Why spend 60-80% of course using functional languages:
— Mutation is discouraged
— Higher-order functions are very convenient
— One-of types via constructs like datatypes

Because:

1. These features are invaluable for correct, elegant, efficient
software (great way to think about computation)

2. Functional languages have always been ahead of their time
3. Functional languages well-suited to where computing is going

Most of course is on (1), so a few minutes on (2) and (3) ...

Summer 2019 CSE341: Programming Languages 12



Ahead of their time

All these were dismissed as “beautiful, worthless, slow things PL
professors make you learn”

« Garbage collection (Java didn'’t exist in 1995, PL courses did)
* Generics (List<T> in Java, C#), much more like SML than C++

« XML for universal data representation (like Racket/Scheme/LISP/...)
» Higher-order functions (Ruby, Javascript, C#, now Java, ...)

* Type inference (C#, Scala, ...)

* Recursion (a big fight in 1960 about this — I'm told ©)

Summer 2019 CSE341: Programming Languages 13



Benefits of No Mutation

[An incomplete list]

1. Can freely alias or copy values/objects: Unit 1
2. More functions/modules are equivalent: Unit 4
3. No need to make local copies of data: Unit 5
4. Depth subtyping is sound: Unit 8

State updates are appropriate when you are modeling a
phenomenon that is inherently state-based

— A fold over a collection (e.g., summing a list) is not!

Summer 2019 CSE341: Programming Languages 14



Some other highlights

Function closures are really powerful and convenient...
— ... and implementing them is not magic

Datatypes and pattern-matching are really convenient...
— ... and exactly the opposite of OOP decomposition

Sound static typing prevents certain errors...
— ... and is inherently approximate

— ... and combine synergistically

* Modularity is really important; languages can help

Summer 2019 CSE341: Programming Languages

Subtyping and generics allow different kinds of code reuse...

15



Is this real programming?

 The way we use ML/Racket/Ruby can make them seem almost
“silly” precisely because lecture and homework focus on
interesting language constructs

« “Real” programming needs file 1/O, string operations, floating-
point, graphics, project managers, testing frameworks, threads,
build systems, ...

— Many elegant languages have all that and more
 Including Racket and Ruby
— If we used Java the same way, Java would seem “silly” too

Summer 2019 CSE341: Programming Languages 16



Our languages, together

SML, Racket, and Ruby (along with Java) are a useful combination

dynamically typed statically typed
functional SML

object-oriented Java

ML: polymorphic types, pattern-matching, abstract types & modules
Racket. dynamic typing, “good” macros, minimalist syntax, eval
Ruby: classes but not types, very OOP, mixins

[and much more]

Really wish we had more time:

Haskell: laziness, purity, type classes, monads
Prolog: unification and backtracking

[and much more]

Summer 2019 CSE341: Programming Languages 17



Summary

No such thing as a “best” PL
Fundamental concepts easier to teach in some (multiple) PLs

A good PL is a relevant, elegant interface for writing software
— There is no substitute for precise understanding of PL semantics

Functional languages have been on the leading edge for decades

— ldeas have been absorbed by the mainstream, but very slowly

— First-class functions and avoiding mutation increasingly essential
— Meanwhile, use the ideas to be a better C/Java/PHP hacker

Many great alternatives to ML, Racket, and Ruby, but each was
chosen for a reason and for how they complement each other

Summer 2019 CSE341: Programming Languages 18



A note on reality

Reasonable questions when deciding to use/learn a language:

What libraries are available for reuse?
What tools are available?

What can get me a job?

What does my boss tell me to do?
What is the de facto industry standard?
What do | already know?

Our course by design does not deal with these questions

— You have the rest of your life for that
— And technology leaders affect the answers

Beware Maslow’s Hammer

Summer 2019 CSE341: Programming Languages

19



From the syllabus

Successful course participants will:

Internalize an accurate understanding of what functional and
object-oriented programs mean

Develop the skills necessary to learn new programming
languages quickly

Master specific language concepts such that they can recognize
them in strange guises

Learn to evaluate the power and elegance of programming
languages and their constructs

Attain reasonable proficiency in the ML, Racket, and Ruby
languages and, as a by-product, become more proficient in
languages they already know

Summer 2019 CSE341: Programming Languages 20



What now?

« Use what you learned whenever you reason about software!
« CSE 401
« CSE 402
« CSE 505

Does PL research (cf. uwplse.org) design new general-purpose
languages? Not really; it does cool stuff with same intellectual tools!

Some current UW projects
— 3D-printing tools
— Checker framework
— Rosette
— Language for microfluidics
— Verified software written in Coq (which is quite SML-like)

Summer 2019 CSE341: Programming Languages 21



The End

Thank you for a great quarter!

©

Don’t be a stranger!

Time for ask-me-almost-anything questions?

Summer 2019 CSE341: Programming Languages

22



