
CSE341: Programming Languages

Lecture 26
Course Victory Lap

Brett Wortzman

Summer 2019

Slides originally created by Dan Grossman

Final Exam

As also indicated in forthcoming email:

• This Friday, 12:00-1:00PM

• Intention is to focus primarily on material since the midterm

– Including topics on homeworks and not on homeworks

– May also have a little ML, just like the course has had

• You will need to write code and English

• Sample exams were written for two hours; our exam will include
a subset of the material

Summer 2019 2CSE341: Programming Languages

Victory Lap

A victory lap is an extra trip

around the track

– By the exhausted victors (us) 

Review course goals

– Slides from Introduction and (skipped) Course-Motivation

Some big themes and perspectives

– Stuff for five years from now more than for the final

Please do your course evaluations!!!

Summer 2019 3CSE341: Programming Languages

[From Lecture 1]

• Many essential concepts relevant in any programming language

– And how these pieces fit together

• Use ML, Racket, and Ruby languages:

– They let many of the concepts “shine”

– Using multiple languages shows how the same concept can
“look different” or actually be slightly different

– In many ways simpler than Java

• Big focus on functional programming

– Not using mutation (assignment statements) (!)

– Using first-class functions (can’t explain that yet)

– But many other topics too

Summer 2019 4CSE341: Programming Languages

[From Lecture 1]

Learning to think about software in this “PL” way will make you a
better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a
lifetime of confidently picking up new languages and ideas

[Somewhat in the style of The Karate Kid movies (1984, 2010)]

Summer 2019 5CSE341: Programming Languages

What is the best programming language?

What characteristics would you want in a best
programming language?

Summer 2019 6CSE341: Programming Languages

What is the best kind of car?

What is the best kind of shoes?

Summer 2019 7CSE341: Programming Languages

Cars / Shoes

Cars are used for rather different things:

– Winning a Formula 1 race

– Taking kids to soccer practice

– Off-roading

– Hauling a mattress

– Getting the wind in your hair

– Staying dry in the rain

Shoes:

– Playing basketball

– Going to a formal

– Going to the beach

Summer 2019 8CSE341: Programming Languages

More on cars

• A good mechanic might have a specialty, but also understands
how “cars” (not a particular make/model) work

– The paint color isn’t essential (syntax)

• A good mechanical engineer really knows how cars work, how
to get the most out of them, and how to design better ones

– I don’t have a favorite kind of car or a favorite PL

• To learn how car pieces interact, it may make sense to start with
a classic design rather than the latest model

– A popular car may not be best

– May especially not be best for learning how cars work

Summer 2019 9CSE341: Programming Languages

All cars are the same

• To make it easier to rent cars, it is great that they all have
steering wheels, brakes, windows, headlights, etc.

– Yet it is still uncomfortable to learn a new one

– Can you be a great driver if you only ever drive one car?

• And maybe PLs are more like cars, trucks, boats, and bikes

• So are all PLs really the same…

Summer 2019 10CSE341: Programming Languages

Are all languages the same?

Yes:

– Any input-output behavior implementable in language X is
implementable in language Y [Church-Turing thesis]

– Java, ML, and a language with one loop and three infinitely-
large integers are “the same”

Yes:

– Same fundamentals reappear: variables, abstraction, one-of
types, recursive definitions, …

No:

– The human condition vs. different cultures
(travel to learn more about home)

– The primitive/default in one language is awkward in another

– Beware “the Turing tarpit” and “Maslow’s Hammer”

Summer 2019 11CSE341: Programming Languages

Functional Programming

Why spend 60-80% of course using functional languages:

– Mutation is discouraged

– Higher-order functions are very convenient

– One-of types via constructs like datatypes

Because:

1. These features are invaluable for correct, elegant, efficient
software (great way to think about computation)

2. Functional languages have always been ahead of their time

3. Functional languages well-suited to where computing is going

Most of course is on (1), so a few minutes on (2) and (3) …

Summer 2019 12CSE341: Programming Languages

Ahead of their time

All these were dismissed as “beautiful, worthless, slow things PL
professors make you learn”

• Garbage collection (Java didn’t exist in 1995, PL courses did)
• Generics (List<T> in Java, C#), much more like SML than C++

• XML for universal data representation (like Racket/Scheme/LISP/…)

• Higher-order functions (Ruby, Javascript, C#, now Java, …)

• Type inference (C#, Scala, …)

• Recursion (a big fight in 1960 about this – I’m told )

• …

Summer 2019 13CSE341: Programming Languages

Benefits of No Mutation

[An incomplete list]

1. Can freely alias or copy values/objects: Unit 1

2. More functions/modules are equivalent: Unit 4

3. No need to make local copies of data: Unit 5

4. Depth subtyping is sound: Unit 8

State updates are appropriate when you are modeling a
phenomenon that is inherently state-based

– A fold over a collection (e.g., summing a list) is not!

Summer 2019 14CSE341: Programming Languages

Some other highlights

• Function closures are really powerful and convenient…

– … and implementing them is not magic

• Datatypes and pattern-matching are really convenient…

– … and exactly the opposite of OOP decomposition

• Sound static typing prevents certain errors…

– … and is inherently approximate

• Subtyping and generics allow different kinds of code reuse…

– … and combine synergistically

• Modularity is really important; languages can help

Summer 2019 15CSE341: Programming Languages

Is this real programming?

• The way we use ML/Racket/Ruby can make them seem almost
“silly” precisely because lecture and homework focus on
interesting language constructs

• “Real” programming needs file I/O, string operations, floating-
point, graphics, project managers, testing frameworks, threads,
build systems, …

– Many elegant languages have all that and more

• Including Racket and Ruby

– If we used Java the same way, Java would seem “silly” too

Summer 2019 16CSE341: Programming Languages

Our languages, together

SML, Racket, and Ruby (along with Java) are a useful combination

dynamically typed statically typed

functional Racket SML

object-oriented Ruby Java

ML: polymorphic types, pattern-matching, abstract types & modules

Racket: dynamic typing, “good” macros, minimalist syntax, eval

Ruby: classes but not types, very OOP, mixins

[and much more]

Really wish we had more time:

Haskell: laziness, purity, type classes, monads

Prolog: unification and backtracking

[and much more]

Summer 2019 17CSE341: Programming Languages

Summary

• No such thing as a “best” PL

• Fundamental concepts easier to teach in some (multiple) PLs

• A good PL is a relevant, elegant interface for writing software

– There is no substitute for precise understanding of PL semantics

• Functional languages have been on the leading edge for decades

– Ideas have been absorbed by the mainstream, but very slowly

– First-class functions and avoiding mutation increasingly essential

– Meanwhile, use the ideas to be a better C/Java/PHP hacker

• Many great alternatives to ML, Racket, and Ruby, but each was
chosen for a reason and for how they complement each other

Summer 2019 18CSE341: Programming Languages

A note on reality

Reasonable questions when deciding to use/learn a language:

• What libraries are available for reuse?

• What tools are available?

• What can get me a job?

• What does my boss tell me to do?

• What is the de facto industry standard?

• What do I already know?

Our course by design does not deal with these questions

– You have the rest of your life for that

– And technology leaders affect the answers

Beware Maslow’s Hammer

Summer 2019 19CSE341: Programming Languages

From the syllabus

Successful course participants will:

• Internalize an accurate understanding of what functional and
object-oriented programs mean

• Develop the skills necessary to learn new programming
languages quickly

• Master specific language concepts such that they can recognize
them in strange guises

• Learn to evaluate the power and elegance of programming
languages and their constructs

• Attain reasonable proficiency in the ML, Racket, and Ruby
languages and, as a by-product, become more proficient in
languages they already know

Summer 2019 20CSE341: Programming Languages

What now?

• Use what you learned whenever you reason about software!

• CSE 401

• CSE 402

• CSE 505

Does PL research (cf. uwplse.org) design new general-purpose
languages? Not really; it does cool stuff with same intellectual tools!

Some current UW projects

– 3D-printing tools

– Checker framework

– Rosette

– Language for microfluidics

– Verified software written in Coq (which is quite SML-like)
Summer 2019 21CSE341: Programming Languages

The End

Thank you for a great quarter!


Don’t be a stranger!

Time for ask-me-almost-anything questions?

Summer 2019 22CSE341: Programming Languages

