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Racket
Next two units will use the Racket language (not ML) and the 
DrRacket programming environment (not Emacs)

– Installation / basic usage instructions on course website

• Like ML, functional focus with imperative features

– Anonymous functions, closures, no return statement, etc.

– But we will not use pattern-matching

• Unlike ML, no static type system: accepts more programs, but 
most errors do not occur until run-time

• Really minimalist syntax

• Advanced features like macros, modules, quoting/eval, 
continuations, contracts, …

– Will do only a couple of these
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Racket vs. Scheme

• Scheme and Racket are very similar languages

– Racket “changed its name” in 2010

• Racket made some non-backward-compatible changes…

– How the empty list is written

– Cons cells not mutable

– How modules work

– Etc.

… and many additions

• Result: A modern language used to build some real systems

– More of a moving target: notes may become outdated

– Online documentation, particularly “The Racket Guide”
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Getting started

DrRacket “definitions window” and “interactions window” very 
similar to how we used Emacs and a REPL, but more user-friendly

– DrRacket has always focused on good-for-teaching

– See usage notes for how to use REPL, testing files, etc.

– Easy to learn to use on your own, but lecture demos will help

Free, well-written documentation:

– http://racket-lang.org/

– The Racket Guide especially, 
http://docs.racket-lang.org/guide/index.html
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File structure

Start every file with a line containing only
#lang racket

(Can have comments before this, but not code)

A file is a module containing a collection of definitions (bindings)…
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Example
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#lang racket

(define x 3) 
(define y (+ x 2)) 

(define cube ; function
(lambda (x) 
(* x (* x x)))) 

(define pow ; recursive function
(lambda (x y) 
(if (= y 0)

1
(* x (pow x (- y 1))))))



Some niceties
Many built-in functions (a.k.a. procedures) take any number of args

– Yes * is just a function

– Yes you can define your own variable-arity functions (not 
shown here)

Better style for non-anonymous function definitions (just sugar):
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(define cube 
(lambda (x) 
(* x x x)))

(define (cube x)
(* x x x))

(define (pow x y) 
(if (= y 0)

1
(* x (pow x (- y 1)))))



An old friend: currying
Currying is an idiom that works in any language with closures

– Less common in Racket because it has real multiple args
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(define pow
(lambda (x)
(lambda (y)
(if (= y 0)

1
(* x ((pow x) (- y 1)))))))

(define three-to-the (pow 3))
(define eightyone (three-to-the 4))
(define sixteen ((pow 2) 4))

Sugar for defining curried functions: 

(No sugar for calling curried functions)

(define ((pow x) y) (if …



Another old-friend: List processing

Empty list:                null

Cons constructor:    cons  

Access head of list: car   

Access tail of list:    cdr

Check for empty:     null?

Notes:
– Unlike Scheme, () doesn’t work for null, but '() does

– (list e1 … en) for building lists

– Names car and cdr are a historical accident
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Examples
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(define (sum xs)
(if (null? xs)

0
(+ (car xs) (sum (cdr xs)))))

(define (my-append xs ys)
(if (null? xs)

ys
(cons (car xs) (my-append (cdr xs) ys))))

(define (my-map f xs)
(if (null? xs)

null
(cons (f (car xs)) (my-map f (cdr xs)))))



Racket syntax

Ignoring a few “bells and whistles,” 

Racket has an amazingly simple syntax

A term (anything in the language) is either:
– An atom, e.g., #t, #f,  34, "hi", null, 4.0, x, …

– A special form, e.g., define, lambda, if

• Macros will let us define our own
– A sequence of terms in parens: (t1 t2 … tn)

• If  t1 a special form, semantics of sequence is special

• Else a function call

• Example: (+ 3 (car xs))

• Example: (lambda (x) (if x  "hi" #t))
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Brackets

Minor note:

Can use [ anywhere you use (, but must match with ]

– Will see shortly places where […] is common style

– DrRacket lets you type ) and replaces it with ] to match
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Why is this good?

By parenthesizing everything, converting the program text into a 
tree representing the program (parsing) is trivial and unambiguous

– Atoms are leaves

– Sequences are nodes with elements as children

– (No other rules)

Also makes indentation easy

Example:

No need to discuss “operator precedence” (e.g., x + y * z)
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(define cube 
(lambda (x) 
(* x x x)))

define

cube lambda

x *

xx x



Parenthesis bias

• If you look at the HTML for a web page, it takes the same 
approach:
– (foo written <foo>

– ) written </foo>

• But for some reason, LISP/Scheme/Racket is the target of 
subjective parenthesis-bashing

– Bizarrely, often by people who have no problem with HTML

– You are entitled to your opinion about syntax, but a good 
historian wouldn’t refuse to study a country where he/she 
didn’t like people’s accents
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http://xkcd.com/297/



Parentheses matter

You must break yourself of one habit for Racket: 

– Do not add/remove parens because you feel like it 

• Parens are never optional or meaningless!!!

– In most places (e) means call e with zero arguments

– So ((e)) means call e with zero arguments and call the 
result with zero arguments

Without static typing, often get hard-to-diagnose run-time errors
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Examples (more in code)

Correct: 

Treats 1 as a zero-argument function (run-time error):

Gives if 5 arguments (syntax error)

3 arguments to define (including (n)) (syntax error)

Treats n as a function, passing it * (run-time error)
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(define (fact n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) (1)(* n (fact (- n 1)))))

(define (fact n)(if = n 0 1 (* n (fact (- n 1)))))

(define fact (n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) 1 (n * (fact (- n 1)))))



Dynamic typing

Major topic coming later: contrasting static typing (e.g., ML) with 
dynamic typing (e.g., Racket)

For now:
– Frustrating not to catch “little errors” like (n * x) until you 

test your function

– But can use very flexible data structures and code without 
convincing a type checker that it makes sense

Example: 

– A list that can contain numbers or other lists

– Assuming lists or numbers “all the way down,” sum all the 
numbers…
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Example
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(define (sum xs)
(if (null? xs)

0
(if (number? (car xs))

(+ (car xs) (sum (cdr xs)))
(+ (sum (car xs)) (sum (cdr xs))))))

• No need for a fancy datatype binding, constructors, etc.

• Works no matter how deep the lists go

• But assumes each element is a list or a number

– Will get a run-time error if anything else is encountered



Better style

Avoid nested if-expressions when you can use cond-expressions 
instead

– Can think of one as sugar for the other

General syntax: (cond [e1a e1b] 
[e2a e2b] 

… 

[eNa eNb])

– Good style: eNa should be #t
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Example
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(define (sum xs)
(cond [(null? xs) 0]

[(number? (car xs))
(+ (car xs) (sum (cdr xs)))]
[#t (+ (sum (car xs)) (sum (cdr xs)))]))



A variation

As before, we could change our spec to say instead of errors on 
non-numbers, we should just ignore them

So this version can work for any list (or just a number)

– Compare carefully, we did not just add a branch
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(define (sum xs)
(cond [(null? xs) 0]

[(number? xs) xs]
[(list? xs)
(+ (sum (car xs)) (sum (cdr xs)))]
[#t 0]))



What is true?

For both if and cond, test expression can evaluate to anything

– It is not an error if the result is not #t or #f

– (Apologies for the double-negative )

Semantics of if and cond:

– “Treat anything other than #f as true”

– (In some languages, other things are false, not in Racket)

This feature makes no sense in a statically typed language

Some consider using this feature poor style, but it can be 
convenient
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Local bindings

• Racket has 4 ways to define local variables
– let

– let*

– letrec

– define

• Variety is good: They have different semantics

– Use the one most convenient for your needs, which helps 
communicate your intent to people reading your code

• If any will work, use let

– Will help us better learn scope and environments

• Like in ML, the 3 kinds of let-expressions can appear anywhere

Summer 2019 24CSE341: Programming Languages



Let

A let expression can bind any number of local variables

– Notice where all the parentheses are

The expressions are all evaluated in the environment from before
the let-expression

– Except the body can use all the local variables of course

– This is not how ML let-expressions work
– Convenient for things like (let ([x y][y x]) …)
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(define (silly-double x)
(let ([x (+ x 3)]

[y (+ x 2)])
(+ x y -5)))



Let*

Syntactically, a  let* expression is a let-expression with 1 more 
character

The expressions are evaluated in the environment produced from 
the previous bindings

– Can repeat bindings (later ones shadow)

– This is how ML let-expressions work
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(define (silly-double x)
(let* ([x (+ x 3)]

[y (+ x 2)])
(+ x y -8)))



Letrec

Syntactically, a  letrec expression is also the same

The expressions are evaluated in the environment that includes all
the bindings

– Needed for mutual recursion 

– But expressions are still evaluated in order: accessing an 
uninitialized binding raises an error

• Remember function bodies not evaluated until called

Summer 2019 27CSE341: Programming Languages

(define (silly-triple x)
(letrec ([y (+ x 2)]

[f (lambda(z) (+ z y w x))]
[w (+ x 7)])

(f -9)))



More letrec

• Letrec is ideal for recursion (including mutual recursion)

• Do not use later bindings except inside functions

– This example will raise an error when called
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(define (silly-mod2 x)
(letrec
([even? ((x)(if (zero? x) #t (odd? (- x 1))))]
[odd?  ((x)(if (zero? x) #f (even? (- x 1))))])
(if (even? x) 0 1)))

(define (bad-letrec x)
(letrec ([y z]

[z 13])
(if x y z)))



Local defines

• In certain positions, like the beginning of function bodies, you 
can put defines
– For defining local variables, same semantics as letrec

• Local defines is preferred Racket style, but course materials will 
avoid them to emphasize let, let*, letrec distinction

– You can choose to use them on homework or not
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(define (silly-mod2 x)
(define (even? x)(if (zero? x) #t (odd? (- x 1))))
(define (odd? x) (if (zero? x) #f (even?(- x 1))))
(if (even? x) 0 1))



Top-level

The bindings in a file work like local defines, i.e., letrec

– Like ML, you can refer to earlier bindings

– Unlike ML, you can also refer to later bindings

– But refer to later bindings only in function bodies

• Because bindings are evaluated in order
• Get an error if try to use a not-yet-defined binding

– Unlike ML, cannot define the same variable twice in module

• Would make no sense: cannot have both in environment
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REPL

Unfortunate detail: 

– REPL works slightly differently
• Not quite let* or letrec

• 

– Best to avoid recursive function definitions or forward 
references in REPL

• Actually okay unless shadowing something (you may not 
know about) – then weirdness ensues

• And calling recursive functions is fine of course

Summer 2019 31CSE341: Programming Languages



Optional: Actually…

• Racket has a module system

– Each file is implicitly a module

• Not really “top-level”

– A module can shadow bindings from other modules it uses

• Including Racket standard library
– So we could redefine + or any other function

• But poor style

• Only shadows in our module (else messes up rest of 
standard library)

• (Optional note: Scheme is different)
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Set!

• Unlike ML, Racket really has assignment statements

– But used only-when-really-appropriate!

• For the x in the current environment, subsequent lookups of x
get the result of evaluating expression e

– Any code using this x will be affected

– Like x = e in Java, C, Python, etc.

• Once you have side-effects, sequences are useful:
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(set! x e)

(begin e1 e2 … en)



Example

Example uses set! at top-level; mutating local variables is similar

Not much new here:

– Environment for closure determined when function is defined, 
but body is evaluated when function is called

– Once an expression produces a value, it is irrelevant how the 
value was produced
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(define b 3) 
(define f (lambda (x) (* 1 (+ x b)))) 
(define c (+ b 4)) ; 7
(set! b 5)
(define z (f 4))   ; 9
(define w c)       ; 7



Top-level

• Mutating top-level definitions is particularly problematic
– What if any code could do set! on anything?

– How could we defend against this?

• A general principle: If something you need not to change might 
change, make a local copy of it.  Example:

Could use a different name for local copy but do not need to
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(define b 3) 
(define f 
(let ([b b])
(lambda (x) (* 1 (+ x b)))))



But wait…

• Simple elegant language design:
– Primitives like + and * are just predefined variables bound to 

functions

– But maybe that means they are mutable

– Example continued:

– Even that won’t work if f uses other functions that use things 
that might get mutated – all functions would need to copy 
everything mutable they used
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(define f 
(let ([b b]

[+ +]
[* *])

(lambda (x) (* 1 (+ x b)))))



No such madness

In Racket, you do not have to program like this

– Each file is a module
– If a module does not use set! on a top-level variable, then 

Racket makes it constant and forbids set! outside the module

– Primitives like +, *, and cons are in a module that does not 
mutate them

Showed you this for the concept of copying to defend against mutation

– Easier defense: Do not allow mutation

– Mutable top-level bindings a highly dubious idea
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The truth about cons

cons just makes a pair

– Often called a cons cell

– By convention and standard library, lists are nested pairs that 
eventually end with null

Passing an improper list to functions like length is a run-time error
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(define pr (cons 1 (cons #t "hi"))) ; '(1 #t . "hi")
(define lst (cons 1 (cons #t (cons "hi" null))))
(define hi (cdr (cdr pr)))
(define hi-again (car (cdr (cdr lst))))
(define hi-another (caddr lst))
(define no (list? pr))
(define yes (pair? pr))
(define of-course (and (list? lst) (pair? lst)))



The truth about cons

So why allow improper lists?

– Pairs are useful
– Without static types, why distinguish (e1,e2) and e1::e2

Style:

– Use proper lists for collections of unknown size
– But feel free to use cons to build a pair 

• Though structs (like records) may be better

Built-in primitives:
– list? returns true for proper lists, including the empty list

– pair? returns true for things made by cons

• All improper and proper lists except the empty list
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cons cells are immutable

What if you wanted to mutate the contents of a cons cell?

– In Racket you cannot (major change from Scheme)

– This is good

• List-aliasing irrelevant
• Implementation can make list? fast since listness is 

determined when cons cell is created
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Set! does not change list contents

This does not mutate the contents of a cons cell:

– Like Java’s x = new Cons(42,null), not x.car = 42
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(define x (cons 14 null))
(define y x)
(set! x (cons 42 null))
(define fourteen (car y))



mcons cells are mutable

Since mutable pairs are sometimes useful (will use them soon), 
Racket provides them too:

– mcons

– mcar

– mcdr

– mpair?

– set-mcar!

– set-mcdr!

Run-time error to use mcar on a cons cell or car on an mcons cell
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