
CSE341: Programming Languages

Lecture 13
Racket Introduction

Brett Wortzman

Summer 2019

Slides originally created by Dan Grossman

Racket
Next two units will use the Racket language (not ML) and the
DrRacket programming environment (not Emacs)

– Installation / basic usage instructions on course website

• Like ML, functional focus with imperative features

– Anonymous functions, closures, no return statement, etc.

– But we will not use pattern-matching

• Unlike ML, no static type system: accepts more programs, but
most errors do not occur until run-time

• Really minimalist syntax

• Advanced features like macros, modules, quoting/eval,
continuations, contracts, …

– Will do only a couple of these

Summer 2019 2CSE341: Programming Languages

Racket vs. Scheme

• Scheme and Racket are very similar languages

– Racket “changed its name” in 2010

• Racket made some non-backward-compatible changes…

– How the empty list is written

– Cons cells not mutable

– How modules work

– Etc.

… and many additions

• Result: A modern language used to build some real systems

– More of a moving target: notes may become outdated

– Online documentation, particularly “The Racket Guide”

Summer 2019 3CSE341: Programming Languages

Getting started

DrRacket “definitions window” and “interactions window” very
similar to how we used Emacs and a REPL, but more user-friendly

– DrRacket has always focused on good-for-teaching

– See usage notes for how to use REPL, testing files, etc.

– Easy to learn to use on your own, but lecture demos will help

Free, well-written documentation:

– http://racket-lang.org/

– The Racket Guide especially,
http://docs.racket-lang.org/guide/index.html

Summer 2019 4CSE341: Programming Languages

File structure

Start every file with a line containing only
#lang racket

(Can have comments before this, but not code)

A file is a module containing a collection of definitions (bindings)…

Summer 2019 5CSE341: Programming Languages

Example

Summer 2019 6CSE341: Programming Languages

#lang racket

(define x 3)
(define y (+ x 2))

(define cube ; function
(lambda (x)
(* x (* x x))))

(define pow ; recursive function
(lambda (x y)
(if (= y 0)

1
(* x (pow x (- y 1))))))

Some niceties
Many built-in functions (a.k.a. procedures) take any number of args

– Yes * is just a function

– Yes you can define your own variable-arity functions (not
shown here)

Better style for non-anonymous function definitions (just sugar):

Summer 2019 7CSE341: Programming Languages

(define cube
(lambda (x)
(* x x x)))

(define (cube x)
(* x x x))

(define (pow x y)
(if (= y 0)

1
(* x (pow x (- y 1)))))

An old friend: currying
Currying is an idiom that works in any language with closures

– Less common in Racket because it has real multiple args

Summer 2019 8CSE341: Programming Languages

(define pow
(lambda (x)
(lambda (y)
(if (= y 0)

1
(* x ((pow x) (- y 1)))))))

(define three-to-the (pow 3))
(define eightyone (three-to-the 4))
(define sixteen ((pow 2) 4))

Sugar for defining curried functions:

(No sugar for calling curried functions)

(define ((pow x) y) (if …

Another old-friend: List processing

Empty list: null

Cons constructor: cons

Access head of list: car

Access tail of list: cdr

Check for empty: null?

Notes:
– Unlike Scheme, () doesn’t work for null, but '() does

– (list e1 … en) for building lists

– Names car and cdr are a historical accident

Summer 2019 9CSE341: Programming Languages

Examples

Summer 2019 10CSE341: Programming Languages

(define (sum xs)
(if (null? xs)

0
(+ (car xs) (sum (cdr xs)))))

(define (my-append xs ys)
(if (null? xs)

ys
(cons (car xs) (my-append (cdr xs) ys))))

(define (my-map f xs)
(if (null? xs)

null
(cons (f (car xs)) (my-map f (cdr xs)))))

Racket syntax

Ignoring a few “bells and whistles,”

Racket has an amazingly simple syntax

A term (anything in the language) is either:
– An atom, e.g., #t, #f, 34, "hi", null, 4.0, x, …

– A special form, e.g., define, lambda, if

• Macros will let us define our own
– A sequence of terms in parens: (t1 t2 … tn)

• If t1 a special form, semantics of sequence is special

• Else a function call

• Example: (+ 3 (car xs))

• Example: (lambda (x) (if x "hi" #t))

Summer 2019 11CSE341: Programming Languages

Brackets

Minor note:

Can use [anywhere you use (, but must match with]

– Will see shortly places where […] is common style

– DrRacket lets you type) and replaces it with] to match

Summer 2019 12CSE341: Programming Languages

Why is this good?

By parenthesizing everything, converting the program text into a
tree representing the program (parsing) is trivial and unambiguous

– Atoms are leaves

– Sequences are nodes with elements as children

– (No other rules)

Also makes indentation easy

Example:

No need to discuss “operator precedence” (e.g., x + y * z)

Summer 2019 13CSE341: Programming Languages

(define cube
(lambda (x)
(* x x x)))

define

cube lambda

x *

xx x

Parenthesis bias

• If you look at the HTML for a web page, it takes the same
approach:
– (foo written <foo>

–) written </foo>

• But for some reason, LISP/Scheme/Racket is the target of
subjective parenthesis-bashing

– Bizarrely, often by people who have no problem with HTML

– You are entitled to your opinion about syntax, but a good
historian wouldn’t refuse to study a country where he/she
didn’t like people’s accents

Summer 2019 14CSE341: Programming Languages

Summer 2019 15CSE341: Programming Languages

http://xkcd.com/297/

Parentheses matter

You must break yourself of one habit for Racket:

– Do not add/remove parens because you feel like it

• Parens are never optional or meaningless!!!

– In most places (e) means call e with zero arguments

– So ((e)) means call e with zero arguments and call the
result with zero arguments

Without static typing, often get hard-to-diagnose run-time errors

Summer 2019 16CSE341: Programming Languages

Examples (more in code)

Correct:

Treats 1 as a zero-argument function (run-time error):

Gives if 5 arguments (syntax error)

3 arguments to define (including (n)) (syntax error)

Treats n as a function, passing it * (run-time error)

Summer 2019 17CSE341: Programming Languages

(define (fact n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) (1)(* n (fact (- n 1)))))

(define (fact n)(if = n 0 1 (* n (fact (- n 1)))))

(define fact (n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) 1 (n * (fact (- n 1)))))

Dynamic typing

Major topic coming later: contrasting static typing (e.g., ML) with
dynamic typing (e.g., Racket)

For now:
– Frustrating not to catch “little errors” like (n * x) until you

test your function

– But can use very flexible data structures and code without
convincing a type checker that it makes sense

Example:

– A list that can contain numbers or other lists

– Assuming lists or numbers “all the way down,” sum all the
numbers…

Summer 2019 18CSE341: Programming Languages

Example

Summer 2019 19CSE341: Programming Languages

(define (sum xs)
(if (null? xs)

0
(if (number? (car xs))

(+ (car xs) (sum (cdr xs)))
(+ (sum (car xs)) (sum (cdr xs))))))

• No need for a fancy datatype binding, constructors, etc.

• Works no matter how deep the lists go

• But assumes each element is a list or a number

– Will get a run-time error if anything else is encountered

Better style

Avoid nested if-expressions when you can use cond-expressions
instead

– Can think of one as sugar for the other

General syntax: (cond [e1a e1b]
[e2a e2b]

…

[eNa eNb])

– Good style: eNa should be #t

Summer 2019 20CSE341: Programming Languages

Example

Summer 2019 21CSE341: Programming Languages

(define (sum xs)
(cond [(null? xs) 0]

[(number? (car xs))
(+ (car xs) (sum (cdr xs)))]
[#t (+ (sum (car xs)) (sum (cdr xs)))]))

A variation

As before, we could change our spec to say instead of errors on
non-numbers, we should just ignore them

So this version can work for any list (or just a number)

– Compare carefully, we did not just add a branch

Summer 2019 22CSE341: Programming Languages

(define (sum xs)
(cond [(null? xs) 0]

[(number? xs) xs]
[(list? xs)
(+ (sum (car xs)) (sum (cdr xs)))]
[#t 0]))

What is true?

For both if and cond, test expression can evaluate to anything

– It is not an error if the result is not #t or #f

– (Apologies for the double-negative )

Semantics of if and cond:

– “Treat anything other than #f as true”

– (In some languages, other things are false, not in Racket)

This feature makes no sense in a statically typed language

Some consider using this feature poor style, but it can be
convenient

Summer 2019 23CSE341: Programming Languages

Local bindings

• Racket has 4 ways to define local variables
– let

– let*

– letrec

– define

• Variety is good: They have different semantics

– Use the one most convenient for your needs, which helps
communicate your intent to people reading your code

• If any will work, use let

– Will help us better learn scope and environments

• Like in ML, the 3 kinds of let-expressions can appear anywhere

Summer 2019 24CSE341: Programming Languages

Let

A let expression can bind any number of local variables

– Notice where all the parentheses are

The expressions are all evaluated in the environment from before
the let-expression

– Except the body can use all the local variables of course

– This is not how ML let-expressions work
– Convenient for things like (let ([x y][y x]) …)

Summer 2019 25CSE341: Programming Languages

(define (silly-double x)
(let ([x (+ x 3)]

[y (+ x 2)])
(+ x y -5)))

Let*

Syntactically, a let* expression is a let-expression with 1 more
character

The expressions are evaluated in the environment produced from
the previous bindings

– Can repeat bindings (later ones shadow)

– This is how ML let-expressions work

Summer 2019 26CSE341: Programming Languages

(define (silly-double x)
(let* ([x (+ x 3)]

[y (+ x 2)])
(+ x y -8)))

Letrec

Syntactically, a letrec expression is also the same

The expressions are evaluated in the environment that includes all
the bindings

– Needed for mutual recursion

– But expressions are still evaluated in order: accessing an
uninitialized binding raises an error

• Remember function bodies not evaluated until called

Summer 2019 27CSE341: Programming Languages

(define (silly-triple x)
(letrec ([y (+ x 2)]

[f (lambda(z) (+ z y w x))]
[w (+ x 7)])

(f -9)))

More letrec

• Letrec is ideal for recursion (including mutual recursion)

• Do not use later bindings except inside functions

– This example will raise an error when called

Summer 2019 28CSE341: Programming Languages

(define (silly-mod2 x)
(letrec
([even? ((x)(if (zero? x) #t (odd? (- x 1))))]
[odd? ((x)(if (zero? x) #f (even? (- x 1))))])
(if (even? x) 0 1)))

(define (bad-letrec x)
(letrec ([y z]

[z 13])
(if x y z)))

Local defines

• In certain positions, like the beginning of function bodies, you
can put defines
– For defining local variables, same semantics as letrec

• Local defines is preferred Racket style, but course materials will
avoid them to emphasize let, let*, letrec distinction

– You can choose to use them on homework or not

Summer 2019 29CSE341: Programming Languages

(define (silly-mod2 x)
(define (even? x)(if (zero? x) #t (odd? (- x 1))))
(define (odd? x) (if (zero? x) #f (even?(- x 1))))
(if (even? x) 0 1))

Top-level

The bindings in a file work like local defines, i.e., letrec

– Like ML, you can refer to earlier bindings

– Unlike ML, you can also refer to later bindings

– But refer to later bindings only in function bodies

• Because bindings are evaluated in order
• Get an error if try to use a not-yet-defined binding

– Unlike ML, cannot define the same variable twice in module

• Would make no sense: cannot have both in environment

Summer 2019 30CSE341: Programming Languages

REPL

Unfortunate detail:

– REPL works slightly differently
• Not quite let* or letrec

• 

– Best to avoid recursive function definitions or forward
references in REPL

• Actually okay unless shadowing something (you may not
know about) – then weirdness ensues

• And calling recursive functions is fine of course

Summer 2019 31CSE341: Programming Languages

Optional: Actually…

• Racket has a module system

– Each file is implicitly a module

• Not really “top-level”

– A module can shadow bindings from other modules it uses

• Including Racket standard library
– So we could redefine + or any other function

• But poor style

• Only shadows in our module (else messes up rest of
standard library)

• (Optional note: Scheme is different)

Summer 2019 32CSE341: Programming Languages

Set!

• Unlike ML, Racket really has assignment statements

– But used only-when-really-appropriate!

• For the x in the current environment, subsequent lookups of x
get the result of evaluating expression e

– Any code using this x will be affected

– Like x = e in Java, C, Python, etc.

• Once you have side-effects, sequences are useful:

Summer 2019 33CSE341: Programming Languages

(set! x e)

(begin e1 e2 … en)

Example

Example uses set! at top-level; mutating local variables is similar

Not much new here:

– Environment for closure determined when function is defined,
but body is evaluated when function is called

– Once an expression produces a value, it is irrelevant how the
value was produced

Summer 2019 34CSE341: Programming Languages

(define b 3)
(define f (lambda (x) (* 1 (+ x b))))
(define c (+ b 4)) ; 7
(set! b 5)
(define z (f 4)) ; 9
(define w c) ; 7

Top-level

• Mutating top-level definitions is particularly problematic
– What if any code could do set! on anything?

– How could we defend against this?

• A general principle: If something you need not to change might
change, make a local copy of it. Example:

Could use a different name for local copy but do not need to

Summer 2019 35CSE341: Programming Languages

(define b 3)
(define f
(let ([b b])
(lambda (x) (* 1 (+ x b)))))

But wait…

• Simple elegant language design:
– Primitives like + and * are just predefined variables bound to

functions

– But maybe that means they are mutable

– Example continued:

– Even that won’t work if f uses other functions that use things
that might get mutated – all functions would need to copy
everything mutable they used

Summer 2019 36CSE341: Programming Languages

(define f
(let ([b b]

[+ +]
[* *])

(lambda (x) (* 1 (+ x b)))))

No such madness

In Racket, you do not have to program like this

– Each file is a module
– If a module does not use set! on a top-level variable, then

Racket makes it constant and forbids set! outside the module

– Primitives like +, *, and cons are in a module that does not
mutate them

Showed you this for the concept of copying to defend against mutation

– Easier defense: Do not allow mutation

– Mutable top-level bindings a highly dubious idea

Summer 2019 37CSE341: Programming Languages

The truth about cons

cons just makes a pair

– Often called a cons cell

– By convention and standard library, lists are nested pairs that
eventually end with null

Passing an improper list to functions like length is a run-time error

Summer 2019 38CSE341: Programming Languages

(define pr (cons 1 (cons #t "hi"))) ; '(1 #t . "hi")
(define lst (cons 1 (cons #t (cons "hi" null))))
(define hi (cdr (cdr pr)))
(define hi-again (car (cdr (cdr lst))))
(define hi-another (caddr lst))
(define no (list? pr))
(define yes (pair? pr))
(define of-course (and (list? lst) (pair? lst)))

The truth about cons

So why allow improper lists?

– Pairs are useful
– Without static types, why distinguish (e1,e2) and e1::e2

Style:

– Use proper lists for collections of unknown size
– But feel free to use cons to build a pair

• Though structs (like records) may be better

Built-in primitives:
– list? returns true for proper lists, including the empty list

– pair? returns true for things made by cons

• All improper and proper lists except the empty list

Summer 2019 39CSE341: Programming Languages

cons cells are immutable

What if you wanted to mutate the contents of a cons cell?

– In Racket you cannot (major change from Scheme)

– This is good

• List-aliasing irrelevant
• Implementation can make list? fast since listness is

determined when cons cell is created

Summer 2019 40CSE341: Programming Languages

Set! does not change list contents

This does not mutate the contents of a cons cell:

– Like Java’s x = new Cons(42,null), not x.car = 42

Summer 2019 41CSE341: Programming Languages

(define x (cons 14 null))
(define y x)
(set! x (cons 42 null))
(define fourteen (car y))

mcons cells are mutable

Since mutable pairs are sometimes useful (will use them soon),
Racket provides them too:

– mcons

– mcar

– mcdr

– mpair?

– set-mcar!

– set-mcdr!

Run-time error to use mcar on a cons cell or car on an mcons cell

Summer 2019 42CSE341: Programming Languages

