
 
 
 Name: ________________________________   netid : ________________________ 

CSE 341 Winter 2019 Final 
 
Please do not turn the page until 2:30. 
 
Rules: 

● The exam is closed-book, closed-note, etc. except both sides of a 8.5x11in page. 

● Please stop promptly at 4:20. 

● There are 152 points, distributed unevenly among 7 multi-part questions. 

● QUESTIONS VARY GREATLY IN DIFFICULTY.  GET EASY POINTS FIRST!!! 

● The exam is printed double-sided, with pages numbered up to 23. 

 
Advice: 

● Read the questions carefully. Understand before you answer. 

● Write down thoughts and intermediate steps so we can give partial credit. 

● Clearly indicate your final answer. 

● WRITE CLEARLY.  No partial credit for anything we can’t read. 

● Questions are not in order of difficulty. Answer everything. 

● If you have questions, ask. 

● Relax.  You are here to learn. 

 

 

1 



 
 
 Name: ________________________________   netid : ________________________ 

QUESTION 1 (15 points)  (Racket Programming) 
 
(A) What does the following program print? 
 
; Note: println prints to the console, like in Java 

(define x 1) 

(define y 341) 

 

(define f 

  (let ([y x]) 

    (begin (println y) 

           (lambda (z) 

             (begin (set! x (+ x z)) 

                    x))))) 

 

(println (f 1)) 

(println (f 2)) 

(println (f 3)) 

 

; write output below 

 
 
 
 
 
 
 
  

2 



 
 
 Name: ________________________________   netid : ________________________ 

(B) What is ans bound to after the following program executes? 
 
(define (split l) 

  (letrec ([loop (lambda (xs ys zs) 

                   (if (null? xs) 

                       (cons ys zs) 

                       (loop (cdr xs) zs (cons (car xs) ys))))]) 

    (loop l null null))) 

 

(define ans (car (split (list 1 2 3 4))) 

 

 

 

ans = _________________________________________ 

 

 
 
 
 
(C) What does the underlined expression evaluate to? 
 
(define-syntax binary-search 

  (syntax-rules () 

    [(binary-search (node left right)) 

     (struct left (node right x))])) 

 

(binary-search (+ x y)) 

 

(define y (x 1 2 3)) 

(+ (x-+ y) (x-x y)) 

 

 

 

Result of underlined expr = ___________________________________  

3 



 
 
 Name: ________________________________   netid : ________________________ 

QUESTION 2 (30 points)  (Streams) 
 
Recall that a stream is a thunk that returns a pair where the cdr is a stream. 
 
(A) Write a Racket function incrementor which takes two arguments, x and f. You 
can assume f is a function which takes two arguments. incrementor should return a 
stream where the nth value (starting at 1) is the result of calling f with first argument x 
and second argument n. Our sample solution is 4 lines. 
 
For example: 
 

(incrementor 3 (lambda (x n) (+ x n))) 

 
Should return a stream whose first five values will be:  4, 5, 6, 7, 8 
 

(define (incrementor x f) 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

) 

  

4 



 
 
 Name: ________________________________   netid : ________________________ 

(B) Write a Racket function slicer whose first argument s is assumed to be a stream 
and whose second argument n is assumed to be a positive integer (> 0). It should return 
a stream that consists of every nth element of s. Our sample solution is 7 lines. 
 
For example: 
 

(slicer (incrementor 3 (lambda (x n) (+ x n))) 2) 

 
Should return a stream whose first three values are:  5, 7, 9 
 
It does not matter when you choose to evaluate the passed in stream s, so long as the 
resulting stream is correct. 
 

(define (slicer s n) 

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

) 

  

5 



 
 
 Name: ________________________________   netid : ________________________ 

(C) Define  multiple-streams to be a “stream of streams” where the nth stream 
(starting at 1) of multiple-streams is another stream containing every multiple of n, 
starting at n.  
 
Use only incrementor and slicer from parts (A) and (B) above, numbers, variables, 
+, and lambda. Our sample solution is 4 lines. 
 
For example, the first element of multiple-streams should be a stream of all 
multiples of 1: 
 

1, 2, 3, 4, 5, …  
 
The second element of multiple-streams should be a stream of all multiples of 2: 
 

2, 4, 6, 8, 10, …  
 

(define multiple-streams 

  

  

  

  

 

 

 

 

 

 

 

  

  

  

  

  

  

) 

  

  

  

6 



 
 
 Name: ________________________________   netid : ________________________ 

(D) After evaluating the following code, assuming parts (A - C) work correctly, what is 
foo bound to? 
 

(define foo 

  (* (car ((cdr ((cdr ((car ((cdr (multiple-streams)))))))))) 

 (car ((cdr ((car ((cdr ((cdr (multiple-streams)))))))))))) 

  

 

 

 

foo = _________________________________________________ 

7 



 
 
 Name: ________________________________   netid : ________________________ 

QUESTION 3 (30 points)  (MUPL Interpreter)  
 
Consider the following subset of the MUPL interpreter from homework. In this question 
we will consider a new feature: a subtract struct for subtracting two int expressions. 
 
(struct var (string))     ;; a variable, e.g., (var "foo") 

(struct int (num))        ;; a constant number, e.g., (int 17) 

(struct add (e1 e2))      ;; add two expressions (e1 + e2) 

(struct ifnz (e1 e2 e3))   ;; if not zero e1 then e2 else e3 

(struct mlet (var e body)) ;; a local binding (let var = e in body) 

(struct subtract  (e1 e2))      ;; subtract e2 from e1 (e1 - e2) 

  

(define (envlookup env str) ...) 

  

(define (eval-under-env e env) 

  (cond [(var? e)      ...] 

   [(int? e)      ...] 

   [(add? e)      ...] 

   [(ifnz? e)     ...] 

   [(mlet? e)     ...] 

   [(subtract? e) ...] 

   [#t (error (format "bad MUPL expression: ~v" e))])) 

 (define (eval-exp e) (eval-under-env e null)) 

 

 

● An int  evaluates to itself and a var  evaluates to the value it is bound to in the 
environment. 
 

● An add  evaluates its subexpressions and, assuming they evaluate to int s, produces 
the int  that is their sum. Gives the error "MUPL addition applied to 
non-number " if not given two int s. 
 

● For (ifnz e1 e2 e3), e1  is first evaluated to a value v.  If v  is an int  not equal to 
0, then the result is evaluating e2 .  If v  is 0, then then the result is evaluating e3.  If v 
does not evaluate to an int,  then gives the error "MUPL ifnz applied to 
non-number ". 
 

● An mlet  evaluates its first subexpression to a value v , then evaluates the second 
subexpression in an environment extended to map the given name to v . 
 

● A subtract  is just like an add , but it subtracts instead of adding. 
 

● Interpreting anything else gives the error "bad MUPL expression: ~v " where "~v " 
is replaced by whatever was passed into the interpreter. 

8 



 
 
 Name: ________________________________   netid : ________________________ 

For each sub-problem, consider a buggy subtract implementation, and give the 
result bound to foo after evaluating this: 
 

(define foo (eval-exp (subtract (add (int 15) (int 8)) (int 26)))) 

  

(Write the MUPL error message from the previous page if it raises an error in the 
interpreter, “exception” if it raises a Racket exception, and “does not halt” if it 
theoretically runs forever) 
 
a) [(subtract? e) (let ([v1 (eval-under-env (subtract-e1 e) env)] 

 [v2 (subtract-e2 e)]) 

                       (eval-under-env (add v1 (- (int-num v2))) env))] 

  

 
 
Result: __________________________________________ 
  

 

 

 

 

 

 

 

b) [(subtract? e) (let ([v1 (subtract-e1 e)] 

 [v2 (eval-under-env (subtract-e2 e) env)]) 

                       (int (- (int-num (eval-under-env (add v1 v2) env)))))] 

  

 
 
Result: __________________________________________ 
 

 

 

 

 

c) [(subtract? e) (eval-under-env 

   (add (subtract-e1 e) 

        (subtract (int 0) (subtract-e2 e))) env)] 

 

 

 

  

Result: __________________________________________  

9 



 
 
 Name: ________________________________   netid : ________________________ 

d) [(subtract? e) (let ([v1 (subtract-e1 e)] [v2 (subtract-e2 e)]) 

 (eval-under-env 

   (ifnz v2 

   (add (int (- 1)) 

  (subtract v1 (add (int (- 1)) v2))) 

   v1) env))] 

  

 
 
 
Result: __________________________________________ 
 

 

 

e) [(subtract? e) (eval-under-env 

 (mlet "a" (subtract-e1 e) 

                    (mlet "b" (subtract-e2 e) 

                      (int (- (int-num (var "a")) 

 (int-num (var "b")))))) env)] 

  

 
 
Result: __________________________________________ 
 
 
 
 
f) Write a subtract branch for the interpreter that works as described above. Do not 
worry about giving an error if not given two ints. 
 

 

[(subtract? e) 

  

  

  

 

 

 

 

 

]  

10 



 
 
 Name: ________________________________   netid : ________________________ 

QUESTION 4 (15 points)  (Ruby Subclasses) 
 
Consider a simple Calculator class which stores the “current result” in instance variable 
@val and supports addition and subtraction: 
 
class Calculator 

   attr_accessor :val 

   def initialize(val) 

       @val = val 

   end 

   def add(val) 

       @val = @val + val 

       @val 

   end 

   def subtract(val) 

       @val = @val - val 

       @val 

   end 

end 

 

On the following page, implement a subclass CalculatorUndo which provides an undo 

method. undo  should return the current value of @val and restore @val to its previous 

value. You may ignore the case that calls undo  when there are no operations to undo. 

Please follow good OOP style and use calls to super as appropriate. 

 

For example: 

c = CalculatorUndo.new(5) # initially, @val = 5 

c.add(4) # now @val = 9 

c.subtract(7) # now @val = 2 

c.add(9) # now @val = 11 

c.undo # returns 11, now @val = 2 

c.undo # returns 2, now @val = 9 

 

11 



 
 
 Name: ________________________________   netid : ________________________ 

class CalculatorUndo < Calculator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

end  

12 



 
 
 Name: ________________________________   netid : ________________________ 

QUESTION 5 (20 points)  (OOP, Mixins, and Porting) 
 
A path is a sequence of moves.  Consider the following Ruby code to represent 
single-move paths in directions East, West, North, and South as well as multi-move 
paths (ComboPath) which append two paths: 
 

class Path 

  def deltaX 

    0 

  end 

  def deltaY 

    0 

  end 

  def deltaXY 

    [deltaX, deltaY] 

  end 

end 

 

class E < Path 

  def deltaX 

    1 

  end 

end 

 

class W < Path 

  def deltaX 

    -1 

  end 

end  

class N < Path 

  def deltaY 

    1 

  end 

end  

 

class S < Path 

  def deltaY 

    -1 

  end 

end 

 

class ComboPath < Path 

  def initialize (p1, p2) 

    @p1 = p1 

    @p2 = p2 

  end 

  def deltaX 

    @p1.deltaX + @p2.deltaX 

  end 

  def deltaY 

    @p1.deltaY + @p2.deltaY 

  end 

end 

 

 
p = ComboPath.new( W.new, 

      ComboPath.new( W.new, 

        ComboPath.new( N.new,  

          ComboPath.new( N.new, E.new )))) 

 

pos = p.deltaXY; 

 

(A) What is pos bound to in the code above? 
 
 
 

13 



 
 
 Name: ________________________________   netid : ________________________ 

 
As we saw in lecture, Ruby’s Enumerable mixin adds many useful methods in terms of 
the underlying class’s each method.  each takes no regular arguments and a block that 
takes a single argument. 
 
The code below adds each  method definitions for Path and ComboPath objects, 
ensuring that if p is an instance of Path, then p.each calls its block argument on all 
the single-move paths in p in order. (In order!) 
 

class Path 

  include Enumerable 

 

  def each 

    yield self 

  end 

end 

class ComboPath 

  def each 

    @p1.each {|p| yield p } 

    @p2.each {|p| yield p } 

  end 

end 

 

(B) Use each to implement a Path method allPrefixes which produces an array of 
all the prefixes of a path.  For example, given the definition of p above: 
 

p.allPrefixes 

 

Should return an array with all the prefixes of p, i.e., an array equivalent to:  
 

[ W.new 

, ComboPath.new( W.new, W.new ) 

, ComboPath.new( W.new, 

    ComboPath.new( W.new, N.new )) 

, ComboPath.new( W.new, 

    ComboPath.new( W.new, 

      ComboPath.new( N.new, N.new ))) 

, ComboPath.new( W.new, 

    ComboPath.new( W.new, 

      ComboPath.new( N.new,  

        ComboPath.new( N.new, E.new )))) 

] 

 
 
 

14 



 
 
 Name: ________________________________   netid : ________________________ 

 
Remember that Ruby arrays provide methods like size to get the number of elements, 
push to add an element to the end of an array, and indexing from -1 to get the last 
element of an array. Our sample solution is 10 lines. 
 
class Path 

    def allPrefixes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    end 

end 
 
 
 

15 



 
 
 Name: ________________________________   netid : ________________________ 

 
 
(C) Add method definitions (indicate what classes you are adding them to—it can be a 
single method added to a single class) such that if p is an instance of any subclass of 
Path, then p.furthestWest returns the smallest “deltaX” value reached by any prefix 
of p. Note that for the definition of p above, p.furthestWest should return -2. 
 
  

16 



 
 
 Name: ________________________________   netid : ________________________ 

QUESTION 6 (18 points)  (Type Systems)  
 
A type system is sound if it accepts (can type check) only programs that will never have 
any runtime type mismatch errors.  That is, a sound type system may reject programs 
which are actually safe. 
 
Conversely, a type system is complete if all programs that never have any runtime type 
mismatch errors are always accepted.  That is, a complete type system may accept 
programs that are not safe. 
 
For each part below, indicate whether the proposed type system is Sound, Complete, 
Both, or Neither.  You do not need to explain your answers. 
 

(a) A type system that rejects all programs 
 

 
 
 

(b) A type system that accepts all programs 
 
 
 

 
(c) Java’s type system extended to allow any two types to be subtypes of each other 

 
 
 

 
(d) A type system for Racket which rejects (+ 1 (list 1)) but accepts all other 

programs 
 
 
 
 

(e) SML's type system extended so that 1 + (if false then [1] else 1) 
has type int 
 
 
  

17 



 
 
 Name: ________________________________   netid : ________________________ 

(f) Consider a small Racket-like programming language with +, if, #t, #f, integer 
constants, and one-argument lambdas. Its type system has the following rules: 
 

(i) The (only) types are bool, int, and fun 
 

(ii) #t and #f have type bool 
 

(iii) Any integer constant has type int 
 

(iv) If e1 and e2 have type int, then the expression  (+ e1 e2) has type int 
 

(v) If e1 has type bool and there’s some type T such that e2 and e3 both 
have type T, then the expression (if e1 e2 e3) has type T. 
 

(vi) The expression (lambda (x) e) has type fun for any variable x. 
 

(vii) If f has type fun and there’s some type T such that e has type T, 
then (f e) has type T. 
 

(viii) All programs which can’t be typed by the above rules are rejected. 
 

  

18 



 
 
 Name: ________________________________   netid : ________________________ 

QUESTION 7 (24 points)  (Subtyping)  
 
Consider a language like in lecture containing (1) records with mutable fields, (2) 
higher-order functions, and (3) subtyping. 
 
Recall that a subtyping relationship is sound if it would not allow a program to 
type-check that could then try to access a field in a record that did not have that field.  
 
(A) Indicate T if the proposed subtyping is sound, otherwise indicate F. You do not need 
to explain your answers.  
 

  T / F 

a 

{f2 : string} 

is a subtype of 

{} 

 

b 

{f1 : string, f2 : {g1 : string, g2 : int} } 

is a subtype of 

{f1 : string, f2 : {g2 : int, g1 : string} }  

 

c 

string -> int 

is a subtype of 

string -> int 

 

d 

{f2 : {g1: int}} -> string 

is a subtype of  

{f2 : {g1: int}, f3 : string} -> string 

 

e 

{f1 : int} -> {f1 : string, f2 : {g1 : int}} 

is a subtype of 

{f1 : int, f3 : int} ->  

  {f1 : string, f2 : {g1 : int, g2 : string}}  

 

19 



 
 
 Name: ________________________________   netid : ________________________ 

f 

{f1 : int} ->  

    {f1 : string, f2 : {g1 : int, g2: string}} 

is a subtype of 

{f1 : int, g3: string} -> 

    {f1 : string, f2 : {g1 : int}} 

 

 

 (B) Assume we change the language so that only fields of type int and string are 
mutable, i.e., it is impossible to change the value of fields containing records. 
 
Which, of your answers to part A change (check any that change)?  
 
 

 Change? 

a  

b  

c  

d  

e  

f  

 

  

20 



 
 
 Name: ________________________________   netid : ________________________ 

Extra Credit 
 
EC1)  
Consider the following code 
 

(struct sml (functional style) #:transparent #:mutable) 

 

(define (typecheck! x) 

  (if (null? x) 

      null 

      (let ([h (car x)]) 

        (begin 

          (set-sml-style! h (- 2 (sml-style h))) 

          (cons h (typecheck! (cdr x))))))) 

 

Fill in the blank so that all calls to equal? in the following program will return #t 
 
(define djg 

 

) 

 

(equal? (sml-style (car djg)) 0) 

(equal? (sml-style (car (cdr djg))) 0) 

(typecheck! djg) 

(equal? (sml-style (car djg)) 0) 

(equal? (sml-style (car (cdr djg))) 0) 
 

 

  

21 



 
 
 Name: ________________________________   netid : ________________________ 

EC2) Fill in the blanks to make this program evaluate to "racket" 
 

; S takes in function f and g and an argument x  

; and applies the function (f x) to (g x) 

(define S 

  (lambda (f g x) 

    ((f x) (g x))) 

 

(define K  

  (lambda (x) 

    (lambda (y) x))) 

 

(let ([a ____________________________________________________] 

      [b ____________________________________________________]) 

  (S (K a) 

     (K b) 

     (S K K b))) 
 
  

22 



 
 
 Name: ________________________________   netid : ________________________ 

EC3) What variables must be previously defined for the following program to run? 
Include no more variable names than necessary. 
 
(define-syntax by 

  (syntax-rules (sally) 

    [(by a (t (sally) c)) (c a a t)])) 

 

(define-syntax sea-shells 

  (syntax-rules (the) 

    [(sea-shells (the sea-shore) sally seas) 

     (let ([sea-shore 2] [seas 5]) 

       (+ seas sally))])) 

 

(by (the sea-shore) 

    (sells (sally) 

           sea-shells)) 

23 


