
Name:

CSE341 Spring 2016, Final Examination
June 6, 2016

Please do not turn the page until 8:30.

Rules:

• The exam is closed-book, closed-note, etc. except for both sides of one 8.5x11in piece of paper.

• Please stop promptly at 10:20.

• There are 125 points, distributed unevenly among 9 questions (all with multiple parts):

• The exam is printed double-sided.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what
is your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
questions.

• If you have questions, ask.

• Relax. You are here to learn.

Name:

1. (16 points) (Racket programming) In this problem, the lists we consider have as elements only
immutable pairs (built with cons) of numbers or mutable pairs (built with mcons) of numbers. Here
are examples of expressions that create such lists:

(list (cons 12 27) (mcons 13 9) (cons 10 15))

(list (cons 1 20) (cons 4 19))

null

(a) Define a Racket function sum-all-pairs that takes a list and returns the sum of all the numbers
contained anywhere in it. (The examples above have sums 86, 44, and 0.)

(b) Define a Racket function negate-lefts that works as follows (pay attention, it is a bit strange):

• It takes a list and returns a new list of the same length.

• If the ith element of the argument is (cons x y), then the ith element of the result is a new
cons cell holding the negation of x and (not-negated, i.e., unchanged) y.

• If the ith element of the argument is (mcons x y), then mutate the pair so that it holds the
negation of x in its mcar and use the same pair in the result.

(c) Define a Racket variable part-c such that you would get this behavior in DrRacket’s REPL:

> part-c

(list (mcons 1 2) ’(3 . 4) (mcons 1 2))

> (negate-lefts part-c)

(list (mcons -1 2) ’(-3 . 4) (mcons -1 2))

(d) Define a Racket variable part-d such that you would get this behavior in DrRacket’s REPL:

> part-d

(list (mcons 1 2) ’(3 . 4) (mcons 1 2))

> (negate-lefts part-d)

(list (mcons 1 2) ’(-3 . 4) (mcons 1 2))

Solution:

(a) (define (sum-all-pairs xs)

(cond [(null? xs) 0]

[(cons? (car xs)) (+ (car (car xs)) (cdr (car xs)) (sum-all-pairs (cdr xs)))]

[(mpair? (car xs)) (+ (mcar (car xs)) (mcdr (car xs)) (sum-all-pairs (cdr xs)))]

[#t (error "bad list")]))

(b) (define (negate-lefts xs)

(cond [(null? xs) null]

[(cons? (car xs)) (cons (cons (- (car (car xs))) (cdr (car xs)))

(negate-lefts (cdr xs)))]

[(mpair? (car xs)) (begin

(set-mcar! (car xs) (- (mcar (car xs))))

(cons (car xs) (negate-lefts (cdr xs))))]

[#t (error ("bad list"))]))

(c) (define part-c (list (mcons 1 2) (cons 3 4) (mcons 1 2)))

(d) (define part-d (let ([x (mcons 1 2)]) (list x (cons 3 4) x)))

Name:

2. (10 points) Consider this (silly) Racket code:

(define y 7)

(define (f x)

(let ([y 2])

(+ y x)))

(define g

(let* ([x y]

[y (+ x 2)]

[f (lambda (x) (+ y x))])

f))

(define a (f y))

(define b (g y))

(set! y 0)

(define c (f y))

(define d (g y))

After all this code is evaluated:

(a) What is a bound to?

(b) What is b bound to?

(c) What is c bound to?

(d) What is d bound to?

Solution:

(a) 9

(b) 16

(c) 2

(d) 9

Name:

3. (14 points) (Streams) Remember a stream is a thunk that returns a pair where the cdr is a stream.

(a) Write a Racket function list->sticky-stream that works as follows:

• It takes a list, which you can assume is non-empty.

• If the list has length n, then:

– For i < n, the ith element of the stream is the ith element of the list (counting from 1).

– For i ≥ n the ith element of the stream is the last element of the list.

Do not use any arithmetic in your solution.

(b) Write a Racket function stream-until-repeat that works as follows:

• It takes a stream and returns a list.

• The list is some prefix of the stream, i.e., if the list has length n, then it contains the first n
values produced by the stream in order.

• The list is as long as it can be without any two adjacent elements being equal (as defined by
Racket’s equal?). That is, the list can have duplicated elements, but not next to each other.

Solution:

(a) There are various solutions; here are three:

(define (list->sticky-stream xs)

(lambda ()

(if (null? (cdr xs))

(cons (car xs) (list->sticky-stream xs))

(cons (car xs) (list->sticky-stream (cdr xs))))))

(define (list->sticky-stream xs)

(lambda ()

(cons (car xs) (list->sticky-stream (if (null? (cdr xs)) xs (cdr xs))))))

(define (list->sticky-stream xs)

(lambda ()

(if (null? (cdr xs))

(letrec ([f (lambda (x) (cons x (lambda () (f x))))])

(f (car xs)))

(cons (car xs) (list->sticky-stream (cdr xs))))))

(b) There are various solutions, but the first element has to be done differently somehow.

(define (stream-until-same-as-previous s)

(letrec ([f (lambda (s prev)

(let ([pr (s)])

(if (equal? (car pr) prev)

null

(cons (car pr) (f (cdr pr) (car pr))))))])

(let ([pr (s)])

(cons (car pr) (f (cdr pr) (car pr))))))

Name:

4. (10 points) Each of the Racket expressions below causes an error when evaluated. Give a brief
description of what the error is. We won’t grade on how similar your wording is to DrRacket’s REPL
provided you communicate the right idea. For example, if an expression is (cdr null), you could
answer, “cdr requires a pair, not an empty list.”

(a) ((+ 3 4))

(b) (let ([x 2]) (let ([x 3][x (+ x 4)]) x))

(c) (define-syntax hd

(syntax-rules ()

[(hd x) ((car) (x))]))

(hd (lambda () (cons 7 7)))

(d) (error "this is my special final-exam error")

(e) ((error "this is my special final-exam error"))

Solution:

(a) Tries to call 7 like a procedure with no arguments

(b) Cannot define the same variable twice in a let-expression

(c) car requires one argument but is called with zero arguments

(d) Reports ”this my special final-exam error”

(e) Reports ”this my special final-exam error” (exact same answer as part (d) — the extra parentheses
have no effect here because error never returns)

Name:

5. (17 points) For your reference, here are the Racket structs we used to define MUPL’s abstract syntax
and the start of eval-under-env.

(struct var (string) #:transparent) ;; a variable, e.g., (var "foo")

(struct int (num) #:transparent) ;; a constant number, e.g., (int 17)

(struct add (e1 e2) #:transparent) ;; add two expressions

(struct isgreater (e1 e2) #:transparent) ;; if e1 > e2 then 1 else 0

(struct ifnz (e1 e2 e3) #:transparent) ;; if not zero e1 then e2 else e3

(struct fun (nameopt formal body) #:transparent) ;; a recursive(?) 1-argument function

(struct call (funexp actual) #:transparent) ;; function call

(struct mlet (var e body) #:transparent) ;; a local binding (let var = e in body)

(struct apair (e1 e2) #:transparent) ;; make a new pair

(struct first (e) #:transparent) ;; get first part of a pair

(struct second (e) #:transparent) ;; get second part of a pair

(struct munit () #:transparent) ;; unit value -- good for ending a list

(struct ismunit (e) #:transparent) ;; if e1 is unit then 1 else 0

(define (eval-under-env e env)

(cond ... ;; one case for each kind of MUPL expression

))

(a) We want to add a swap expression to MUPL:

(struct swap (e) #:transparent)

A swap expression evaluates its subexpression. If the result is a MUPL pair value, then swap
produces a new pair where the first componenet is the subresult’s second component and the
second component is the subresult’s first component.

Write the case you would add to eval-under-env to implement MUPL swap expressions.

(b) Now suppose we do not add the swap struct or change eval-under-env. Make it “feel like”
MUPL has swap expressions by defining a Racket function swap that is a MUPL macro. To avoid
unneeded recomputation, assume the expression passed to swap does not use MUPL variable _x.

(c) Here is an incorrect attempt to write a length function in MUPL for MUPL lists:

(define mupl-length-wrong

(fun "f" "x" (ifnz (munit? (var "x"))

(int 0)

(add (int 1) (call (var "f") (second (var "x")))))))

i. What is wrong with the code above? Describe how to fix the MUPL code so that the Racket
variable mupl-length-wrong is bound to a correct MUPL length function.

ii. What would happen when trying to evaluate:

(eval-exp (call mupl-length-wrong (apair (int 86) (munit))))

Briefly explain your answer.

Solution:
See next page.

Name:

More room, if needed, for your Problem 5 answer.

Solution:

(a) [(swap? e)

(let ([v (eval-under-env (swap-e e) env)])

(if (apair? v)

(apair (apair-e2 v) (apair-e1 v))

(error "MUPL swap applied to non-pair")))]

(b) (define (swap e)

(mlet "_x" e

(apair (second (var "_x")) (first (var "_x")))))

(c) It uses the Racket function munit? to see if the variable x is bound to (munit) when it should
use (ismunit (var "x")).

(d) The first subexpression of the ifnz in the function body will be Racket’s false, so when eval-exp-under-env

is evaluating the function body after doing the call, it will encounter a #f and will produce an
error about a bad MUPL expression.

Name:

6. (13 points) In ML, the hd and tl functions can be used to access list parts (as we did in Homework
1).

(a) What are the types of hd and tl?

(b) Does ML’s type system prevent applying hd and tl to a number?

(c) Does ML’s type system prevent applying hd and tl to the empty list?

(d) If we changed ML’s type system so that hd and tl could be used only on lists of numbers:

i. Would your answer to part (b) change?

ii. Would your answer to part (c) change?

(e) Consider these alternate definitions:

fun hd_alt xs = fun tl_alt xs =

case xs of case xs of

[] => [] [] => []

| x::y => x | x::y => y

i. What type, if any, would ML give to hd_alt?

ii. What type, if any, would ML give to tl_alt?

iii. Would it be sound (in terms of what ML’s type system is designed to prevent) to give hd_alt

the type for hd you gave in part (a)?

iv. Would it be sound (in terms of what ML’s type system is designed to prevent) to give tl_alt

the type for tl you gave in part (a)?

Solution:

(a) hd has type ’a list -> ’a and tl has type ’a list -> ’a list

(b) Yes

(c) No

(d) i. No

ii. No

(e) i. ’a list list -> ’a list (this is admittedly tricky)

ii. ’a list -> ’a list

iii. No

iv. Yes (in fact ML does)

Name:

7. (14 points) Recall Ruby’s Enumerable module is a mixin that adds lots of useful functionality to a
class by relying on the class’ each method. Further recall each takes no regular arguments and a block
that takes one argument.

(a) Add to the Enumerable module a method increasing? that takes one regular argument i and
does not expect a block. increasing? should return true if the first value produced by each is
(strictly) greater than i and each subsequent value produced by each is (strictly) greater than the
previous one. Else increasing? should return false. Here are examples (since Array includes
Enumerable):

• [3,7,9].increasing? 2 evaluates to true

• [3,7,9].increasing? 4 evaluates to false

• [3,9,7].increasing? 2 evaluates to false

(b) Will your part (a) solution cause an error with [x].increasing? 2 if x is bound to an object that
is not a number? Answer “always”, “sometimes”, or “never” and briefly explain your answer.

(c) Add to the Enumerable module a method count_same that takes no regular arguments and
expects a block that expects one argument. count_same should return the number of elements
produced by each for which the element is equal to (using ==) the result of passing the element
to the block passed to count_same. Here are examples:

• [1,3,0,4].count_same {|x| x * x} evaluates to 2.

• [1,3,0,4].count_same {|x| x + 1} evaluates to 0.

• [1,3,0,4].count_same {|x| 3} evaluates to 1.

Solution:

(a) module Enumerable

def increasing? i

ans = true

self.each { |x| # each fine in place of self.each

ans = ans && x > i

i = x

}

ans

end

end

(b) Sometimes: It can work for any enumerable object whose elements all support the > method when
passed an argument of the class of the previous element.

(c) module Enumerable

def count_same

ans = 0

self.each {|x| ans += 1 if x == yield(x) } # each fine in place of self.each

ans

end

end

Name:

8. (14 points) This code defines two Ruby classes, including same_size methods that work on any of
the 4 combinations of a MyIntList and a MyRange.

class MyRange

def initialize(lo,hi)

@lo = lo

@hi = hi

end

... other methods not shown

def min

@lo

end

def max

@hi

end

def same_size other

other.same_size_range self

end

def same_size_range other

other.max - other.min == max - min

end

def same_size_list other

other.length == max - min + 1

end

end

class MyIntList

def initialize (i,r)

@head = i

@rest = r

end

... other methods not shown

def length

if @rest.nil? then 1 else 1 + @rest.length end

end

def same_size other

other.same_size_list self

end

def same_size_range other

other.max - other.min + 1 == self.length

end

def same_size_list other

other.length == self.length

end

end

(a) Complete the ML code below by writing a function same_size : intPile * intPile -> bool

to port the Ruby code to ML in a functional style. Use the functions defined below, but do not
define any additional helper functions.

datatype myIntList = Nil

| List of int * myIntList

type myRange = int * int

datatype intPile = L of myIntList

| R of myRange

fun length xs =

case xs of

Nil => 0

| List(_,xs) => 1 + length xs

fun max (_,hi) = hi

fun min (lo,_) = lo

(b) The style of the Ruby code is unnecessarily complicated even if we want a “pure OOP” approach.
Give alternate definitions of same_size as follows:

• Do not use is_a?, instance_of?, class, or similar methods.

• Do not use same_size_range or same_size_list.

• Do define a helper method in each class (unless you decide it is unneeded for a class).

• Do redefine same_size in each class.

Solution:
See next page.

Name:

More room, if needed, for your Problem 8 answer.

Solution:

(a) fun same_size (p1,p2) =

case (p1,p2) of

(L xs, L ys) => length xs = length ys

| (L xs, R ys) => length xs = max ys - min ys + 1

| (R ys, L xs) => length xs = max ys - min ys + 1

| (R xs, R ys) => max xs - min xs = max ys - min ys

(b) class MyRange

def size

max - min + 1

end

def same_size2 other

other.size == self.size

end

end

class MyIntList

def size

length

end

def same_size2 other

other.size == self.size

end

end

Name:

9. (17 points) This problem considers a language like in lecture containing (1) records with mutable
fields, (2) higher-order functions, and (3) subtyping. Like in lecture, subtyping for records includes
width subtyping and permutation subtyping but not depth subtyping, and subtyping for functions
includes contravariant arguments and covariant results. The goal of the type system is to prevent
accessing a field of a record that does not exist.

We have these functions defined:

fun f1 (x : {foo : int, bar : int}) =

x.foo = 7;

x.bar = x.bar + 1

fun f2 (x : {foo : int, bar : int}) =

{baz = x.bar + x.foo}

fun f3 (x : {foo : {foo : int}, bar : int}) =

x.foo.foo - 42

fun f4 (g : {foo : int, bar : int} -> {foo : int}) =

g {foo = 17, bar = 19}

(a) Answer one of (A)-(D) below for this expression:

(part i.) f1 {foo = 19, bar = 20, baz = 24}

(A) It type-checks and, if run, does not access a record field that does not exist.

(B) It does not type-check and, if run, does not access a record field that does not exist.

(C) It type-checks and, if run, accesses a record field that does not exist.

(D) It does not type-check and, if run, accesses a record field that does not exist.

Repeat the exercise (i.e., answer one of (A)-(D)) for each of these expressions:

ii. f1 (f2 {foo = 19, bar = 20})

iii. f2 (f1 {foo = 19, bar = 20})

iv. f3 {foo = { foo = 24, bar = 25 }, bar = 26}

v. f4 (fn y => {foo = y.foo, bar = y.bar + y.baz})

vi. f4 (fn y => {foo = y.foo - 2})

vii. f4 (fn y => {}) (* {} is a record with zero fields *)

viii. f4 (fn y => {foo = y.foo, bar = y.foo})

(b) Complete the following blanks with “is definitely”, “might or might not be”, or “is definitely not”
where (A)-(D) refer to the statements in part (a).

i. If no expression in a language has answer (B), the type system
sound.

ii. If no expression in a language has answer (C), the type system
sound.

iii. If no expression in a language has answer (D), the type system
sound.

Solution:
(a): (i) A, (ii) D, (iii) D, (iv) B, (v) D, (vi) A, (vii) B, (viii) A (b): (i) might or might not be, (ii)
definitely, (iii) might or might not be
Note: announced during the exam to assume f1 returns new value of x.bar, but I meant for f1 to end
with returning x in which case the answer would be A.

Name:

Here are two extra (sides of) pages in case you need them. If you use them for a question, please write
“see also extra sheets” or similar on the page with the question.

Name:

Second extra page.

