
Name:

CSE341 Autumn 2018, Final Examination
December 13, 2018

Please do not turn the page until 8:30.

Rules:

• The exam is closed-book, closed-note, etc. except for both sides of one 8.5x11in piece of paper.

• Please stop promptly at 10:20.

• There are 125 points, distributed unevenly among 8 questions (all with multiple parts).

• The exam is printed double-sided.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what
is your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
questions.

• If you have questions, ask.

• Relax. You are here to learn.

Name:

1. (21 points) (Racket programming)

Please put your answers on the next page.

(a) Write a Racket function map-index1 that behaves as follows:

• Like map it takes two arguments, a function and a list, and produces a list of the same length where
the function is applied to each list element in order.

• Unlike map, the function passed to map-index1 takes two arguments, first a number and second a
list element.

• When the function passed to map-index1 is called, the first argument is i when the second argument
is the ith element of the list.

• The first list element is at position 1.

Use one locally-defined helper function (using letrec or a local define) and no other helper functions.

(b) Use map-index1 to write a Racket function redact-evens that takes a list of strings and returns a list
of strings. The strings at odd-numbered list positions in the input list are in the output list unchanged
and the strings at even-numbered list positions in the input list are replaced in the output list by the
empty string "". Hints:

• map-index1 is not curried, so you will not be able to use partial application.

• The mod operation (e.g., % in Java) is remainder in Racket.

• (redact-evens (list "hi" "bye" "foo" "bar" "quux")) should evaluate to
’("hi" "" "foo" "" "quux").

(c) Without using map-index1, write a Racket function add-index that takes a list and returns a list of the
same length. The output list is a list of pairs (cons cells) where each pair’s car is the position of the list
(starting at 1) and the cdr is the element at the same position of the input list. For example,
(add-index (list "hi" "bye" "foo" "bar" "quux")) should evaluate to
’((1 . "hi") (2 . "bye") (3 . "foo") (4 . "bar") (5 . "quux")).
Use one locally-defined helper function (using letrec or a local define) and no other helper functions.

(d) Fill in the blanks so that map-index2 is a suitable replacement for map-index1. Note map is in Racket’s
standard library.

(define (map-index2 f xs)

(map (lambda (x) ____________________________) (add-index _________________)))

(e) Is your implementation of map-index2 equivalent (in the sense we discussed in class) to your implemen-
tation of map-index1 for all f and xs, some f and xs, or no f and xs? Explain your answer in
roughly 1 English sentence.

Name:

Please put your answers to Problem 1 here.

Solution:

(a) (define (map-index1 f xs)

(letrec ([g (lambda (i xs)

(if (null? xs)

null

(cons (f i (car xs))

(g (+ i 1) (cdr xs)))))])

(g 1 xs)))

(b) (define (redact-evens xs) (map-index1 (lambda (i x) (if (= (remainder i 2) 0) "" x)) xs))

(c) (define (add-index xs)

(letrec ([g (lambda (i xs)

(if (null? xs)

null

(cons (cons i (car xs)) (g (+ i 1) (cdr xs)))))])

(g 1 xs)))

(d) (define (map-index2 f xs)

(map (lambda (pr) (f (car pr) (cdr pr))) (add-index xs)))

(e) Equivalent for all f and xs – both versions will always call f the same number of times with the same
arguments in the same order, so there is no way for a caller to distinguish the implementations

Name:

2. (14 points) (Scope and Mutation)

(a) Consider the following Racket definitions:

(define x 15)

(define y 17)

In an environment where x and y are defined as above, for each of the following bindings, either give the
value that the variable would be bound to after evaluation or indicate “error” if an error would occur.
For example, the answer for (define b0 (+ x y)) would be 32.

i. (define b1 (let ([x y]

[y x])

(cons x y)))

ii. (define b2 (letrec ([x y]

[y x])

(cons x y)))

iii. (define b3 (let* ([x y]

[y x])

(cons x y)))

iv. (define b4 (let ([x (cons x y)]

[y (cons x y)])

(cons (car x) (car y))))

(b) Consider the following Racket program:

(define f

(let ([x 1])

(begin (set! x (+ x 1))

(lambda ()

(let ([y 1])

(begin (set! y (+ y 1))

(set! x (+ y x))

(lambda ()

(let ([z 1])

(begin (set! z (+ z 1))

(set! y (+ y z))

(set! x (+ y x))

x)))))))))

(define a1 (f))

(define a2 (f))

(define p1 (a1))

(define p2 (a2))

(define p3 (a1))

(define p4 (a2))

i. After executing this program, what is p1 bound to?

ii. After executing this program, what is p2 bound to?

iii. After executing this program, what is p3 bound to?

iv. After executing this program, what is p4 bound to?

Solution:

(a) (i) ’(17 . 15) (ii) error (iii) ’(17 . 17) (iv) ’(15 . 15)

(b) (i) 10, (ii) 14, (iii) 20, (iv) 26

Name:

3. (20 points) (Streams) Recall we defined a stream as a thunk that returns a pair where the cdr is a stream.
We now call such a stream a regular stream, so that we can define an endable stream to be a thunk that can
either return a pair where the cdr is a stream or return #f instead of a pair. Returning #f means the endable
stream has no more elements. So an endable stream may or may not have an infinite number of elements.

(a) Write a Racket function sum-until-non-number-or-end that takes an endable stream and either returns
a number or runs forever. The number is the sum of all numbers appearing before the first non-number
in the stream or before the stream’s end (if the stream ends before a non-number). Hint: number?

(b) Consider this Racket code:

(define (stream->endable-stream stop? s)

(lambda ()

(let ([p (s)])

(if (stop? (car p))

#f

(cons (car p) (stream->endable-stream stop? (cdr p)))))))

(define (s-help i) (cons i (lambda () (s-help (* 2 i)))))

(define s (lambda () (s-help 1)))

For each of the following, indicate what the expression evaluates to, or “does not terminate” if it does
not terminate or “error” if it ends due to an error.

i. (sum-until-non-number-or-end (stream->endable-stream (lambda (y) (> y 10)) s))

ii. (sum-until-non-number-or-end (stream->endable-stream (lambda (y) (> y 0)) s))

iii. (sum-until-non-number-or-end (stream->endable-stream (lambda (y) #f) s))

(c) Write a Racket function zip-endable-streams that takes two endable streams s1 and s2 and returns an
endable stream. The returned endable stream contains pairs where the ith pair produced by the stream
has the ith element of s1 in the car and ith element of s2 in the cdr. The returned stream is infinite if
both argument streams are infinite, else it ends when the shorter of the two argument streams ends.

Solution:

(a) (define (sum-until-non-number-or-end es)

(let ([p (es)])

(cond [(not p) 0]

[(not (number? (car p))) 0]

[#t (+ (car p) (sum-until-non-number-or-end (cdr p)))])))

Or

(define (sum-until-non-number-or-end es)

(let ([p (es)])

(if (or (not p) (not (number? (car p))))

0

(+ (car p) (sum-until-non-number-or-end (cdr p))))))

(b) i. 15

ii. 0

iii. does not terminate

(c) (define (zip-endable-streams es1 es2)

(lambda ()

(let ([p1 (es1)]

[p2 (es2)])

(if (and p1 p2)

(cons (cons (car p1) (car p2))

(zip-endable-streams (cdr p1) (cdr p2)))

#f))))

Name:

4. (17 points) (Interpreter implementation) Below is some of the code we provided you for Homework 5 (MUPL).
See the next page for the questions.

(struct var (string) #:transparent) ;; a variable, e.g., (var "foo")

(struct int (num) #:transparent) ;; a constant number, e.g., (int 17)

(struct add (e1 e2) #:transparent) ;; add two expressions

(struct isgreater (e1 e2) #:transparent) ;; if e1 > e2 then 1 else 0

(struct ifnz (e1 e2 e3) #:transparent) ;; if not zero e1 then e2 else e3

(struct fun (nameopt formal body) #:transparent) ;; a recursive(?) 1-argument function

(struct call (funexp actual) #:transparent) ;; function call

(struct mlet (var e body) #:transparent) ;; a local binding (let var = e in body)

(struct apair (e1 e2) #:transparent) ;; make a new pair

(struct first (e) #:transparent) ;; get first part of a pair

(struct second (e) #:transparent) ;; get second part of a pair

(struct munit () #:transparent) ;; unit value -- good for ending a list

(struct ismunit (e) #:transparent) ;; if e1 is unit then 1 else 0

(define (envlookup env str)

(cond [(null? env) (error "unbound variable during evaluation" str)]

[(equal? (car (car env)) str) (cdr (car env))]

[#t (envlookup (cdr env) str)]))

(define (eval-under-env e env)

(cond [(var? e)

(envlookup env (var-string e))]

[(int? e)

e]

[(add? e)

(let ([v1 (eval-under-env (add-e1 e) env)]

[v2 (eval-under-env (add-e2 e) env)])

(if (and (int? v1)

(int? v2))

(int (+ (int-num v1)

(int-num v2)))

(error "MUPL addition applied to non-number")))]

[(isgreater? e)

(let ([v1 (eval-under-env (isgreater-e1 e) env)]

[v2 (eval-under-env (isgreater-e2 e) env)])

(if (and (int? v1)

(int? v2))

(if (> (int-num v1) (int-num v2))

(int 1)

(int 0))

(error "MUPL isgreater applied to non-number")))]

...))

Name:

(a) We can extend the MUPL language with an expression form for computing the max of two subexpressions
with this struct:

(struct mmax (e1 e2) #:transparent)

But we give a semantics more flexible than some other features in MUPL:

• If both subexpressions evaluate to MUPL ints, then return their max.

• If only one subexpression evaluates to a MUPL int, return that MUPL int.

• Raise a dynamic error only if both subexpressions do not evaluate to MUPL ints.

Implement this by adding a case to the “big cond” in eval-under-env.

(b) Alternately, we could use a Racket function like a MUPL macro for providing mmax, but without the more
flexible semantics from part (a). Implement a Racket function mmax2 such that (mmax2 e1 e2) produces
a MUPL expression that, when run, evaluates to the maximum of the results of the subexpression, but
encounters a dynamic error unless both subexpressions produce numbers. Use mlet so that the expression
produced evaluates e1 and e2 only once; to do so, assume you can use variables "_x" and "_y" without
shadowing problems.

(c) Explain in roughly 1 English sentence why the limited features available in MUPL make it so the macro
approach in part (b) cannot provide the more flexible semantics from part (a). What feature would
MUPL need to make it possible?

Solution:

(a) [(mmax? e)

(let ([v1 (eval-under-env (mmax-e1 e) env)]

[v2 (eval-under-env (mmax-e2 e) env)])

(cond [(and (int? v1) (int? v2)) (if (> (int-num v1) (int-num v2)) v1 v2)]

[(int? v1) v1]

[(int? v2) v2]

[#t (error "MUPL mmax had applied to two non-numbers")]))]

(b) (define (mmax2 e1 e2)

(mlet "_x" e1

(mlet "_y" e2

(ifnz (isgreater (var "_x") (var "_y")) (var "_x") (var "_y")))))

(c) A MUPL program cannot test whether a value is an integer – if we added an isint struct that is like
ismunit, then it would be possible.

Name:

5. (16 points) (Static Typing) In this problem, we consider ML’s type system and assume the purpose of the
type system is to prevent passing the wrong kind of value to a primitive, such as trying to multiply a function.
(In practice, the type system is intended to prevent more, but that is not really relevant here.)

(a) In 1-2 English sentences, what is ML’s typing rule for expressions of the form if e1 then e2 else e3?

(b) Is ML’s type system sound (no explanation required)?

(c) Is ML’s type system complete (no explanation required)?

(d) Fill in the blank such that this ML binding does not type-check:

val x = 13 + (if true then 4 else ______________)

(e) In 1-2 English sentences, propose a change to the type system that:

• Allows all the programs that used to type-check to still type-check

• Does not let a program to type-check that did not type-check before if that program could pass the
wrong kind of value to a primitive.

• Does allow a set of programs to type-check that did not type-check before, including your answer to
part (d).

(f) With your proposed change, is ML’s type system sound (no explanation required)?

(g) With your proposed change, is ML’s type system complete (no explanation required)?

Solution:

(a) e1 must have type bool, e2 and e3 must type-check with the same type t, and the overall type for the
expression is t.

(b) yes

(c) no

(d) any expression that does not type-check or type-checks but cannot have type int

(e) For expressions of the form if true then e2 else e3, it can type-check with type t provided that e2

has type t (and we can disregard e3, i.e., have no concern whether it type-checks or what type it has,
but full credit for requiring it to type-check with a different type from e2 provided the answer to part
(d) type-checks).

(f) yes

(g) no

Name:

6. (13 points) (Ruby blocks and mixins) Recall the Enumerable mixin provides many useful methods by
assuming that any class including the mixin defines an each method that takes a block and iterates over “its
elements” (the notion of “its elements” depends on the class), passing each element to the block.

One method in Enumerable is any?, which takes a block and returns true if the block evaluates to true (or
anything “not false”) for any of “the elements”.

(a) Show how any? can be defined in the Enumerable mixin. (Unlike the real any? in Ruby, your solution
can assume callers always provide a block. We also do not specify if any? stops as soon as it determines
the answer is true or not.)

(b) Add an appropriate each method to this class definition so that Pair.new(a,b).any? {|x| x} would
be equivalent to a || b.

class Pair

include Enumerable

def initialize(x,y)

@x = x

@y = y

end

your code here

but write it to

the right

end

(c) Consider now a different mixin E2 that is like Enumerable except it provides each but assumes that any?
is defined (the opposite of how Enumerable works). Show how each can be defined in E2.

(d) Now assume a mixin E3 that is like Enumerable except it defines both each in terms of any? (your answer
to part (c)) and any? in terms of each (your answer to part (a)). Further assume class Pair includes
E3 instead of Enumerable.

i. Given your answer to part (b) is still in the Pair class, does Pair.new(a,b).any? {|x| x} still
behave as desired? If not, what happens instead?

ii. If you remove your answer to part (b) so that each and any? are both provided by E3 and not over-
ridden, does Pair.new(a,b).any? {|x| x} still behave as desired? If not, what happens instead?

Solution:

(a) no short-circuiting as written below, which is fine, but ans =(ans || yield x) would short-circuit,
which is also fine

def any?

ans = false

each {|x| ans = (yield x || ans)}

ans

end

(b) def each

yield @x

yield @y

end

(c) def each

any? {|x| yield x && false }

end

(d) i. Yes

ii. No, an infinite loop (actually stack overflow) occurs as each and any? call each other recurisvely
forever

Name:

7. (12 points) (OOP) This problem considers ML code written in a functional style and Ruby written in an
OOP style for the same problem. Here’s the provided code for both languages:

datatype shirt = ShortSleeve | LongSleeve | TankTop

datatype hat = Winter | Summer | Costume

datatype upper_body_clothing = Shirt of shirt | Hat of hat | Necklace | Gloves

fun num_sleeves c =

case c of

Shirt s => (case s of

TankTop => 0

| _ => 2)

| _ => 0

class UpperBodyClothing

def num_sleeves

0

end

end

class Shirt < UpperBodyClothing

def num_sleeves

2

end

def good_for_hot_day

true

end

end

class ShortSleeve < Shirt

end

class LongSleeve < Shirt

def good_for_hot_day

false

end

end

class TankTop < Shirt

def num_sleeves

0

end

end

class Hat < UpperBodyClothing

def good_for_hot_day

false

end

end

class Winter < Hat

end

class Summer < Hat

def good_for_hot_day

true

end

end

class Costume < Hat

end

class Necklace

def good_for_hot_day

true

end

end

class Gloves

def good_for_hot_day

false

end

end

(a) The ML code for num_sleeves is correct but the Ruby code has a couple bugs.

i. For what objects is the Ruby code wrong?

ii. What would happen for such objects?

iii. How would you fix the bugs?

(b) The Ruby code for good_for_hot_day is correct. Port this code to ML by writing a function good_for_hot_day.

Solution:

(a) i. Any instance of Necklace or Glove

ii. Calling num_sleeves produces a method-missing error

iii. Class Necklace and class Gloves should both subclass UpperBodyClothing.

(b) fun good_for_hot_day c =

case c of

Shirt s => (case s of

LongSleeve => false

| _ => true)

| Hat h => (case h of

Summer => true

| _ => false)

| Necklace => true

| Gloves => false

Name:

8. (12 points) In this problem, we consider a language like in lecture containing (1) records with mutable fields,
(2) higher-order functions, and (3) subtyping. We do not require explanations for your answers.

(a) For each of the following questions, answer “yes” if and only if the proposed subtyping relationship is
sound, meaning it would not allow a program to type-check that could then try to access a field in a
record that did not have that field.

i. Is {f1 : int, f2 : { a: int, b : int}, f3 : string}

a subtype of {f2 : { a: int, b : int}, f1 : int}?

ii. Is {f1 : int, f2 : { a: int, b : int}, f3 : string}

a subtype of {f1 : int, f2 : {a : int}, f3 : string}?

iii. Is int -> {f1 : int, f2 : int}

a subtype of int -> {f1 : int, f2 : int, f3 : int}?

iv. Is {f1 : int, f2 : int} -> int

a subtype of {f1 : int, f2 : int, f3 : int} -> int?

v. Is {f1 : int, f2 : int} -> {f1 : int, f2 : int}

a subtype of {f1 : int} -> {f1 : int, f2 : int, f3 : int}?

(b) If we change the language so that records are immutable (you cannot update contents of a field), which,
if any, of your answers to part (a) change?

Solution:

(a) i. yes

ii. no

iii. no

iv. yes

v. no

(b) part (ii) becomes yes; all others the same

Name:

Use this page for any answers that don’t fit on another page, but please indicate on the other page that you
are doing so. Write something like, “see last page.”

