
CSE 341 AB: Section 9
Josh Pollock

Office Hours: Tuesdays 3:00pm - 4:00pm

Questions?
HW 5, HW 6, early HW 7

Lecture Material

Agenda
● Modules

○ Namespaces
○ Mixins

● Double Dispatch

● Visitor Pattern (if time)

Modules

Ruby Modules
A module is like a class, except:

- You define it with the module keyword.

- You can’t create instances of it. (No new.)

- You can’t specify a superclass for it. (No < superclass.)

- You can include it in a class using the include keyword.

Modules serve two purposes in Ruby:

1. Namespaces
a. Define constants and class methods.
b. E.g. Math::PI and Math.cos(5)

2. Mixins
a. Assume a class defines a certain instance method(s) (e.g. <=> or each).
b. Define default impls of other instance methods that use that method(s). (e.g. <=, map)
c. Classes can include the module, define the instance method, and get the others for free.

Why These Design Choices?

Math Namespace

Mixins

Simple Examples

Assumes class defines <=>.

Comparable Mixin

Enumerable Mixin
Assumes class defines each.

1. Class
2. Mixins, bottom up
3. Superclass

Method Lookup Order with Mixins

class Mathematician < Person

 include Professor

 include Employee

end

Double Dispatch

What arguments determine the method definition we use?
obj.method(a, b, c)

Single dispatch
obj.method(a, b, c)

Double dispatch
obj.method(a, b, c)

Triple dispatch
obj.method(a, b, c)
...

Multiple Dispatch

Problem: Ruby only has single dispatch!
How can we emulate double dispatch?

Aside: A Different Way to Write Method Calls
obj.method_name(arg1, arg2, …, argn)

obj.send(:method_name, arg1, arg2, …, argn)

(Almost) the same! The only difference is that send allows you to call private
methods, too.

The pedagogical advantage of send is that it makes the OOP thought process
clearer.

We are sending (dynamically dispatching) a method and its args to an object.

Double Dispatch Example

send(:fight, snippy)

dwayne_johnson = Rock.new
snippy = Scissors.new

dwayne_johnson.fight(snippy)

dwayne_johnson
send(:fightWithRock, dwayne_johnson)

snippy

The sender’s type is
encoded in this
method.

Double Dispatch Example

send(:fight, snippy)

dwayne_johnson = Rock.new
snippy = Scissors.new

dwayne_johnson.fight(snippy)

dwayne_johnson
send(:fightWithRock, dwayne_johnson)

snippy

Double Dispatch Example

send(:fight, snippy)

dwayne_johnson = Rock.new
snippy = Scissors.new

dwayne_johnson.fight(snippy)

dwayne_johnson
send(:fightWithRock, self)

snippy

dwayne_johnson
is actually self.

Demo!

The Kicker
Multiple dispatch is branching on the types of the arguments to a method.

This is much easier to do in a language with pattern matching constructs!

Visitor Pattern

A Common Pattern in Compilers
I have an AST and I want to…

● interpret it.
● print it as a string.
● serialize it to some bytes.
● compile it to an abstract machine.
● partially evaluate it.

A Common Pattern in Compilers
I have an AST and I want to…

● interpret it.
● print it as a string.
● serialize it to some bytes.
● compile it to an abstract machine.
● partially evaluate it.

These are all recursive traversals (visitors) on each variant of the AST.
Remember how HW5 went! Evaluate the subexpressions, then combine them.

These rely on pattern matching, but how can we write these in Ruby?

Use Double Dispatch!
Dispatch lets us do pattern matching.

Make every variant a class. This allows us to define some default behaviors.

Each traversal is a visitor and each AST variant is a node.

We will use double dispatch to match on nodes and visitors.
But crucially, the first dispatch only needs to be written once!

send(:accept, visitor)
negNode

send(:visitNeg, negNode)
visitor

