
CSE 341 AA: Section 9

Porter Jones
pbjones@cs.washington.edu
Office Hours: Thursdays 5:30 - 7:30pm

Double Dispatch

● Ruby and Java both use single dispatch, which uses the runtime class of self to
lookup the method when a call is made

● Double dispatch uses the runtime classes of both self and a single method
parameter to lookup the method when a call is made
○ Ruby and Java don’t have double dispatch, but it’s possible to emulate it

by using the single dispatch twice (example on next slide)
○ You get to do this on HW 7!

Double dispatch emulation

Mixins in Ruby

● A mixin is a collection of methods
○ You can’t create instances of a mixin
○ Typically languages with mixins let a class have one superclass and any

number of mixins

● Including a mixin makes its methods part of the class
○ Order of includes matters for extending/overriding
○ Mixins can access methods/instance variables defined in a class

Mixins Example
class Pt
 attr_accessor :x, :y
 include Comparable # Defines <, >, ==, !=, >=, <= in terms of <=>

 def distance
 Math.sqrt (@x ** 2 + @y ** 2)
 end

 def <=> other
 self.distance <=> other.distance
 end
end

Mixins: method lookup rules

Mixins change our lookup rules slightly:
● When looking for receiver obj's method m, look in obj's class, then mixins that

class includes (later includes shadow), then obj's superclass, then the
superclass' mixins, etc.

● As for instance variables, the mixin methods are included in the same object
○ So usually bad style for mixin methods to use instance variables since

names can clash

Visitor Pattern

● A template for handling a functional composition in OOP
○ OOP wants to group code by classes
○ We want code grouped by functions. This makes it easier to add

operations at a later time.

● Relies on Double Dispatch!!!
○ Dispatch based on (VisitorType, ValueType) pairs.

● Often used to compute over AST’s (abstract syntax trees)
● Heavily used in compilers

Visitor Example

class Add
 attr_reader :e1, :e2
 def initialize(e1,e2)
 @e1 = e1
 @e2 = e2
 end
 def accept(visitor, arg=nil)
 visitor.visitAdd(self, arg)
 end
end

class TypeChecker
 def visitAdd(add, arg)
 t1 = add.e1.accept(self)
 t2 = add.e2.accept(self)
 # Make sure t1 and t2 are ints
 # return the type int
 end
end

