Section 9 - Double Dispatch, Mixins, Visitors

This handout was composed by Porter Jones. There are probably plenty of typos/incorrect solutions/etc for you to catch! Please email me with any issues,
comments, or feedback at pbjones@cs.washington.edu. All thoughts are welcome :)

Double Dispatch

Fill in the following class definitions that simulate a game of rock-paper-scissors using double dispatch. In
case you aren’t familiar with rock-paper-scissors, rock should beat scissors, scissors should beat paper, and
paper should beat rock. Everything should tie with itself.

class Rock
#TODO
def fight other

end

def fightWithRock other
"Tie"

end

#TODO

def fightWithPaper other

end
#TODO
def fightWithScissors other

end
end

class Scissors
#TODO
def fight other

end

def fightWithRock other
"Rock wins"

end

#TODO

def fightWithPaper other

end
#TODO
def fightWithScissors other

end
end

class Paper
#TODO
def fight other

end

def fightWithRock other
"Paper wins"

end

#TODO

def fightWithPaper other

end
#TODO
def fightWithScissors other

end
end

Visitor Patterns
Below are definitions of three Ruby classes, each with its own accept method to accept a visitor. Assuming
these classes, implement the visitors described after their definitions.

class Int class Neg
attr reader :i attr reader :e
def initialize i def initialize e
@i = 1 de = e
end end
def accept(visitor, arg=nil) def accept(visitor, arg=nil)
visitor.visitInt(self, arg) visitor.visitNeg(self, arg)
end end
end end
class Add

attr reader :el, :e2
def initialize(el,e2)

@el = el
RQe2 = e2
end

def accept(visitor, arg=nil)
visitor.visitAdd(self, arg)
end
end

A sample expression
SAMPLE =
Neg.new (Add.new (Add.new (Add.new (Int.new (3),
Neg.new (Int.new 9)),
Int.new(-42)),
Add.new (Int.new(73),
Neg.new (Int.new(14)))))

1) Implement a visitor that returns a count of the number of negations in a expression tree.

2) Implement a visitor that returns a string version of an expression tree. Instances of Neg should look
like - (e) and instances of Add should look like (e1 + e2).

3) Implement a visitor that evaluates an expression tree and returns the result as an Int.

4) Given the following datatype binding in SML, determine what SML construct would achieve the same
behavior as the Ruby visitors we wrote above. Then implement that construct for each of the visitors

we wrote above.

datatype exp = Int of int
| Neg of exp
| Add of exp * exp

Section 9 - Solutions

This handout was composed by Porter Jones. There are probably plenty of typos/incorrect solutions/etc for you to catch! Please email me with any issues,
comments, or feedback at pbjones@cs.washington.edu. All thoughts are welcome :)

Double Dispatch

class Rock class Paper
def fight other def fight other
other.fightWithRock self other.fightWithPaper self
end end
def fightWithRock other def fightWithRock other
"Tie" "Paper wins"
end end
def fightWithPaper other def fightWithPaper other
"Paper wins" "Tie"
end end
def fightWithScissors other def fightWithScissors other
"Rock wins™" "Scissors wins"
end end
end end

class Scissors
def fight other
other.fightWithScissors self
end
def fightWithRock other
"Rock wins"
end
def fightWithPaper other
"Scissors wins"
end
def fightWithScissors other
"Tie"
end
end

Visitor Patterns

1) class NegCounter

def visitInt(int, arg)
0

end

def visitNeg(neg, argqg)
1 + neg.e.accept(self)

end

def visitAdd(add, arg)
add.el.accept(self) + add.e2.accept(self)

end

end

2) class Stringer
def visitInt(int, argqg)
int.i.to_ s
end
def visitNeg(neg, argqg)
"-(" 4+ neg.e.accept(self) + ")"
end
def visitAdd(add, argqg)
"(" + add.el.accept(self) + " + " + add.e2.accept(self) + ")"
end
end

3) class Evaluator

def visitInt(int, argqg)
int

end

def visitNeg(neg, argqg)
Int.new (- neg.e.accept(self).i)

end

def visitAdd(add, arg)
Int.new(add.el.accept(self).i + add.e2.accept(self) .i)

end

end

4) Functions in SML that pattern match on the datatype will achieve similar behavior to the visitor
patterns shown above. Below are implementations of the three analogous functions.

fun neg counter e =
case e of
Int =>0
| Neg e => 1 + neg counter e
| Add (el,e2) => neg counter el + neg counter e2

fun stringer e =
case e of
Int 1 => Int.toString i
| Neg e => "-(" ~ (stringer e) ~ ")"
| Add (el,e2) => "(" ~ (stringer el) ~ " + " ~ (stringer e2) ~ ™))"

fun evaluator e =
case e of
Int 1 => Int i
| Neg e => (case evaluator e of Int i => Int (~1i))
| Add (el,e2) => (case (evaluator el, evaluator e2) of
(Int i, Int j) => Int (i + 7))

