
CSE 341: Section 8
Yuma & Taylor
University of Washington

Overview

● Homework 5 check-in, early questions
● Enumerable types in Ruby

○ Arrays
○ Hashes
○ Ranges

● Blocks

Arrays

Arrays: definition, indexing

irb(main):001:0> a = [1, 2, 3]

=> [1, 2, 3]

irb(main):002:0> a[0]

=> 1

Arrays: reverse indexing

irb(main):003:0> a[-1]

=> 3

irb(main):004:0> a[-2]

=> 2

Arrays: “out-of-bounds” indexing

irb(main):005:0> a[10]

=> nil

irb(main):006:0> a[10] = 5

=> 5

irb(main):007:0> a

=> [1, 2, 3, nil, nil, nil, nil, nil, nil, nil, 5]

Arrays: dynamic assignment

irb(main):008:0> a[6] = "Hello"

=> "Hello"

irb(main):009:0> a

=> [1, 2, 3, nil, nil, nil, “Hello”, nil, nil, nil, 5]

Arrays: range slicing

irb(main):010:0> a[8..2] = ["CSE 341", "is great!"]

=> ["CSE 341", "is great!"]

irb(main):011:0> a

=> [1, 2, 3, nil, nil, nil, "Hello", nil, "CSE 341", "is
great!", nil, nil, 5]

Arrays: block initialization

irb(main):001:0> a = Array.new(10) { 0 }

=> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

irb(main):002:0> a = Array.new(10) { |i| i ** 2 }

=> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Arrays: additional uses

Arrays are an incredibly flexible and fundamental unit of idiomatic Ruby
programming.

● Arrays can be used as sets: |, &, -, #uniq
● Arrays can be used as queues: #push, #pop
● Arrays can be used as stacks: #shift, #unshift

Lots more: https://ruby-doc.org/core-2.2.0/Array.html

https://ruby-doc.org/core-2.2.0/Array.html

Array assignment is aliasing, which means you have to be careful about
mutable interactions, e.g.:

irb(main):001:0> a = [1, 2, 3]

irb(main):002:0> b = a

irb(main):003:0> a[2] = 4

Arrays: aliasing

irb(main):004:0> a

=> [1, 2, 4]

irb(main):005:0> b

=> [1, 2, 4]

Array assignment is aliasing, which means you have to be careful about
mutable interactions, e.g.:

irb(main):001:0> a = [1, 2, 3]

irb(main):002:0> b = a.clone

irb(main):003:0> a[2] = 4

Arrays: aliasing

irb(main):004:0> a

=> [1, 2, 4]

irb(main):005:0> b

=> [1, 2, 3]

Blocks

Blocks

● Many methods take in blocks
○ Kind of like anonymous functions that can be passed as arguments to functions

● Similar to closures but not quite
○ Have lexical scope (uses environment where block was defined)
○ Cannot be assigned to variables (they are “second-class,” not “first-class”)

Blocks (example)

3.times { puts “hi” }

● times is a method of the Fixnum class that takes a block and executes it the
number of times represented by the Fixnum (in this case, 3)

● { puts “hi” } is a block that prints “hi”

Output:
hi
hi
hi
=> 3

Blocks (implicit call argument)

irb(main):001:0> def my_method (x)
irb(main):001:1> yield x + 1
irb(main):001:2> end
irb(main):002:0> my_method(1) # <- crash!
irb(main):002:0> my_method(1) { |x| puts x }
2
irb(main):002:0> my_method(1) { puts “Block called!” }
Block called!

Blocks (explicit call argument)

irb(main):001:0> def my_method (x, &block)
irb(main):001:1> block.call(x + 1)
irb(main):001:2> end
irb(main):002:0> my_method(1) # <- crash!
irb(main):002:0> my_method(1) { |x| puts x }
2
irb(main):002:0> my_method(1) { puts “Block called!” }
Block called!

Each

● Similar to for-each loops in Java

irb(main):001:0> [1, 2, 5, 12].each {|i| puts (i*i)}
1
4
25
144
=> [1, 2, 5, 12]

Map

● Similar to map in SML

irb(main):001:0> a = Array.new(10) {|i| i }
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

irb(main):002:0> a.map {|x| x * 2}
=> [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Inject

● Similar to fold in SML

irb(main):001:0> a = Array.new(10) {|i| i }
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

irb(main):002:0> a.inject(0) {|acc,elt| acc+elt }
=> 45

Select

● Similar to filter in SML

irb(main):001:0> a = Array.new(10) {|i| i }
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

irb(main):002:0> a.select {|x| x > 7 }
=> [8, 9]

Conditionals

irb(main):001:0> a = Array.new(10) {|i| i }
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

irb(main):002:0> a.any? {|x| x > 7 }
=> true

irb(main):003:0> a.all? {|x| x > 7 }
=> false

irb(main):004:0> a.all? # if no block provided…
=> true # true iff every element is not false or nil

Hashes

Hashes

Arrays identify their elements by index, whereas Hashes identify their elements
by name:

irb(main):001:0> h = { foo: "bar", baz: "quux" }

=> {:foo=>"bar", :baz=>"quux"}

Hashes: #[], #[]=

irb(main):001:0> h = {}

irb(main):002:0> h["foo"] = "bar"

irb(main):003:0> h["foo"]

=> "bar"

irb(main):004:0> h

=> {"foo"=>"bar"}

Hashes: #delete

● Delete keys with #delete

irb(main):001:0> h = { foo: "bar", baz: "quux" }

irb(main):002:0> h.delete(:foo)

irb(main):003:0> h.delete(:foo)

=> {:baz=>"quux"}

Hashes: #each

● Iterate keys with #each

irb(main):001:0> h = { foo: "bar", baz: "quux" }

irb(main):002:0> h.each { |k, v| puts "#{k} => #{v}" }

foo => bar

baz => quux

