
CSE 341: Section 7
Yuma & Taylor
(Slides credit: Eric Mullen)

Outline

● Interpreting LBI (Language Being Implemented)
○ Assume Correct Syntax
○ Check for Correct Semantics
○ Evaluating the AST

● LBI “Macros”
● Eval, Quote, and Quasiquote
● Variable Number of Arguments
● Apply

Building an LBI Interpreter

● We are skipping the parsing phase ← Do Not Implement
● Interpreter written in Racket

○ Racket is the “metalanguage”

● LBI code represented as an AST
○ AST nodes represented as Racket structs
○ Allows us to skip the parsing phase

● Can assume AST has valid syntax
● Can NOT assume AST has valid semantics

Correct Syntax Examples

Using these Racket structs…

We can define these LBI programs:

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int 34)
(add (int 34) (int 30))
(ifnz (add (int 5) (int 7)) (int 12) (int 1))

Incorrect Syntax Examples

Using these Racket structs…

We can define these LBI programs (but they are incorrect!):

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

Valid LBI programs

Using these Racket structs…

Racket structs can take any value; we restrict the domain of valid forms in LBI.

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

Racket vs. LBI syntax

Using these Racket structs…

This is valid Racket syntax, but it is not valid LBI syntax.

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

Evaluating LBI

● eval-exp should return a LBI value
● LBI values all evaluate to themselves
● Otherwise, we haven’t interpreted far enough

Demo!

(int 7) ; evaluates to (int 7)
(add (int 3) (int 4)) ; evaluates to (int 7)

Checking for Correct Semantics

● What if the program is a legal AST, but evaluation of it tries to use the
wrong kind of value?

● For example, “add an integer and a function”
● You should detect this and give an error message that is not in terms of

the interpreter implementation
● We need to check that the type of a recursive result is what we expect

○ No need to check if any type is acceptable

Macros

● Extend language syntax (allow new constructs)
● Written in terms of existing syntax
● Expanded before language is actually interpreted or compiled

LBI Macros

● Interpreting LBI using Racket as the metalanguage
● LBI is made up of Racket structs
● In Racket, these are just data types
● Why not write a Racket function that returns LBI ASTs?

LBI Macros

● If our LBI Macros is a Racket function

● Then the LBI code

● Expands to

(define (++ exp) (add (int 1) exp))

(++ (int 17))

(add (int 1) (int 17))

Quote

● Syntactically, Racket statements can be thought of as lists of tokens
● (+ 3 4) is a “plus sign”, a “3”, and a “4”
● quote-ing a parenthesized expression produces a list of tokens

(+ 3 4) ; 7
(quote (+ 3 4)) ; '(+ 3 4)
(quote (+ 3 #t)) ; '(+ 3 #t)
(+ 3 #t) ; Error

Quote

● Syntactically, Racket statements can be thought of as lists of tokens
● (+ 3 4) is a “plus sign”, a “3”, and a “4”
● quote-ing a parenthesized expression produces a list of tokens

(+ 3 4) ; 7
‘(+ 3 4) ; '(+ 3 4)
‘(+ 3 #t) ; '(+ 3 #t)
(+ 3 #t) ; Error

Quasiquote

(quasiquote (+ 3 (unquote(+ 2 2)))) ; '(+ 3 4)
(quasiquote
 (string-append

"I love CSE"
(number->string

 (unquote (+ 3 338)))))
; '(string-append "I love CSE" (number->string 341))

Quasiquote

`(+ 3 ,(+ 2 2)) ; '(+ 3 4)

`(string-append
"I love CSE"
(number->string

 ,(+ 3 338))))
; '(string-append "I love CSE" (number->string 341))

eval & apply

Demo!

