
CSE 341 AA: Section 7

Porter Jones
pbjones@cs.washington.edu
Office Hours: Thursdays 5:30 - 7:30pm

Implementing a language in Racket

● Hardest distinction is to know what is handled by Racket and what needs to be
handled by your language

● You get to choose (sort of) what expressions your language supports and the
semantics for evaluating them
○ We get to decide and implement all of those semantics rules we have

been learning all quarter!!!

Implementing a language in Racket

● Racket prevents “wrong” expressions like the one below from being created

(const #t)

● We have to define an interpreter that prevents “wrong” expressions like this
one:

(add (bool #t) (const 3))

Implementing a language in Racket

; prevents first example from previous slide
(struct const (int) #:transparent)

; inside interpreter: prevents second example
[(add? e)
(let ([v1 (eval-exp (add-e1 e))]
 [v2 (eval-exp (add-e2 e))])
 (if (and (const? v1) (const? v2))
 (const (+ (const-int v1) (const-int v2)))
 (error "add applied to non-number")))]

quote

● quote is a Racket function for converting code to a list of tokens

● quote: parses its argument as data
○ can also use ‘ for alternate syntax
○ ‘(e) is equivalent to (quote e)

● eval: takes data and evaluates it
○ (eval (quote e)) = e

quote examples

(quote (+ 3 4 (+ 5 6)))

; produces the list '(+ 3 4 (+ 5 6))

(eval (quote (+ 3 4 (+ 5 6)))) ; produces 18

quasiquote

● Similar to quote, but with the option to unquote tokens inside of quasiquote!
○ can also use ` for alternate syntax
○ `(e) is equivalent to (quasiquote e)

● unquote unquotes the next token inside a quasiquote
○ can also use ` for alternate syntax
○ ,(e) is equivalent to (unquote e)

quasiquote examples

(quasiquote (+ 3 4 (unquote (+ 5 6))))

; produces the list '(+ 3 4 11)

(eval (quasiquote (+ 3 4 (unquote (+ 5 6)))))

; still produces 18 when called with eval

