
CSE 341 AC
Yuma & Taylor
University of Washington

Section Agenda

● Homework 3 due Monday… any questions?
● Midterm in class May 3rd (a week from Friday).
● Mutual recursion
● Modules
● Higher-order functions and Currying practice

Mutual Recursion

Want to write a function that takes a list and returns a bool which is true iff the
list has alternating 0s and 1s.

val is_alternating = fn : int list -> bool

● is_alternating [0,1,0] = true
● is_alternating [1,0,1] = true
● is_alternating [1,1,0] = false

A (first) solution sketch

One idea:

● val zero = fn : int list -> bool
● val one = fn : int list -> bool

Start in either one function or the other, return true iff the list begins with a
zero or one, and then recur on the other.

A problem

fun zero [] = true

 | zero 0::xs’ = one xs’

 | _ = false

fun one [] = true

 | one 1::xs’ = zero xs’

 | _ = false

Mutual recursion

fun zero [] = true

 | zero 0::xs’ = one xs’

 | _ = false

and one [] = true

 | one 1::xs’ = zero xs’

 | _ = false

A solution

fun zero [] = true

 | zero 0::xs’ = one xs’

 | _ = false

and one [] = true

 | one 1::xs’ = zero xs’

 | _ = false

fun is_alternating [] = true

 | is_alternating 0::xs’ = one xs’

 | is_alternating 1::xs’ = zero xs’

 | _ = false

An (alternative) solution

fun zero [] = true

 | zero 0::xs’ = one xs’

 | _ = false

and one [] = true

 | one 1::xs’ = zero xs’

 | _ = false

fun is_alternating xs =

 case xs of

 [] => true

 | 0::xs’ => one xs’

 | 1::xs’ => zero xs’

 | _ => false

Modules

● Good for organization and managing namespaces
○ Can organize bindings into separate modules so that everything is not at the top level

● Good for maintaining invariants
○ Maintain invariants within a module by hiding implementation details from a client

Modules - Examples of Invariants

● Ordering of operations
○ e.g. restrict to insert, then query

● Data kept in good state
○ e.g. keep fractions simplified (RATIONAL example from lecture!)

● Policies followed
○ e.g. don’t allow shipping request without purchase order

Modules

In lecture we saw this example
of a module:

signature MATHLIB =
sig
val fact : int -> int
val half_pi : real
val doubler : int -> int
end

structure MyMathLib :> MATHLIB =
struct
fun fact x = ...
val half_pi = Math.pi / 2.0
fun doubler x = x * 2
end

Modules

In lecture we saw this example
of a module:

What happens if we remove this
line from the signature?

signature MATHLIB =
sig
val fact : int -> int
val half_pi : real
val doubler : int -> int
end

structure MyMathLib :> MATHLIB =
struct
fun fact x = ...
val half_pi = Math.pi / 2.0
fun doubler x = x * 2
end

Practice with modules..!

Higher-order practice #1

Write a function that takes an int list and produces an (int * int)
list which contains all pairs of elements in the original list.

val all_pairs = fn : int list -> (int * int) list

Higher-order practice #2

Now let’s say we want only pairs which are either (even, odd) or (odd, even) (but
not (even, even), etc.).

val all_even_pairs xs = fn : int list -> (int * int) list

