
CSE 341 AC
Yuma & Taylor
University of Washington



Today’s agenda

● Homework 2 check-in
● SML standard library documentation
● Polymorphic datatypes
● Higher-order functions

○ The basics
○ Unnecessary function wrapping
○ Returning functions from functions
○ map, flat_map, filter, fold



Homework #2 check-in

Due this Friday at 11:00pm PST. Homework #1 feedback should be out (or will 
be soon).

● How are things going?
● Any questions before we dive in?



SML Standard Library

● Standard ML Basis Library: http://sml-family.org/Basis/
● Modules/structures/signatures… we’ll get to this shortly, and you can 

ignore it for now.
● Look in “Required Structures”, click the link you’re interested in.

Example: http://sml-family.org/Basis/string.html#SIG:STRING.explode:VAL

http://sml-family.org/Basis/
http://sml-family.org/Basis/string.html#SIG:STRING.explode:VAL


Polymorphic datatypes

● You can use 'a, 'b, etc when defining your own datatypes! 

● Example: defining a binary tree that can store different type data in its leaf 
nodes (data of type 'a) vs branch nodes (data of type 'b)

     datatype ('a, 'b) tree = Leaf of 'a 
                            | Node of 'b * ('a, 'b) tree
                                         * ('a, 'b) tree



datatype ('a, 'b) tree = Leaf of 'a 
                       | Node of 'b * ('a, 'b) tree
                                    * ('a, 'b) tree

You can create trees: 

   Node("hi", Leaf true, Leaf false) : (bool, string) tree

   Node("hi", Leaf true, Leaf 7) : does not typecheck! 



datatype ('a, 'b) tree = Leaf of 'a 
                       | Node of 'b * ('a, 'b) tree
                                    * ('a, 'b) tree

You can create trees: 

   Node("hi", Leaf true, Leaf false) : (bool, string) tree

   Node("hi", Leaf true, Leaf 7) : does not typecheck! 



Higher-order functions: overview

Recall that, up until now, we have seen functions types like:

val tomorrow = fn : date -> date

or

val add = fn : (int * int) -> int



Higher-order functions: overview

● But! Functions are first-class citizens in SML, meaning they can be passed 
as values to anything that accepts them.

● Examples:
○ val map = fn : ((‘a -> ‘b) * ‘a list) -> ‘b list
○ val filter = fn : ((‘a -> bool) * ‘a list) -> ‘a list

Don’t worry if you don’t understand these yet, we’ll go through them 
one-by-one.



Higher-order functions: unnecessary 
function wrapping

Recall earlier that we encouraged boolean zen, i.e., to rewrite

if e then true else false

as

e



Higher-order functions: unnecessary 
function wrapping

The same applies to functions! If you create an anonymous function to pass as 
an argument elsewhere, like:

fn x => f x

you can instead write:

f



Higher-order functions: returning functions

We can return functions from other functions:

fun f x = (* int -> (int -> int) *)

  if x > 0 

  then fn y => 2 * y

  else fn y => 42

What does this do?



Higher-order functions: demo

Let’s write map, flat_map, filter, fold.

(Code posted afterwords on the course webpage.)


