
CSE 341 AA: Section 3

Porter Jones
pbjones@cs.washington.edu
Office Hours: Wednesdays 8:30 - 10:30am

SML Library Stuff

http://sml-family.org/Basis/manpages.html

Unnecessary Function Wrapping

Don’t do it!

Example:

fn x => size(x) (* just use size!!! *)

Double check your code at a later moment/with a clean slate to spot this!

Map

fun map (f,xs) =
 case xs of
 [] => []
 | x::xs’ => (f x)::(map(f,xs’))

Mystery function 1

fun mystery1(p1, p2) =
 case p2 of
 [] => []
 | p::p2' => if p1 p
 then p :: mystery1(p1, p2')
 else mystery1(p1, p2')

filter

fun filter(f, xs) =
 case xs of
 [] => []
 | x::xs' => if f x
 then x :: filter(f, xs')
 else filter(f, xs')

Mystery function 2

fun mystery2 (p1, p2, p3) =
 case p3 of
 [] => p2
 | p::p3' => mystery2 (p1, p1(p2,p), p3')

fold

fun fold (f, acc, xs) =
 case xs of
 [] => acc
 | x::xs' => fold (f, f(acc,x), xs')

Extra problems

1. Implement a function even_string_total_length that takes a list of strings and
returns the total length of all of the even strings in the given list.

2. Implement flat_map using fold

Extra problems

1. Implement a function even_string_total_length that takes a list of strings and
returns the total length of all of the even strings in the given list.

See next slide for a possible answer...

2. Implement flat_map using fold

fun flat_map (f, xs) =
 fold (fn (acc, x) => acc @ f x, [], xs)

One way to do it, but there are sooooo many!

fun even_string_total_length xs =
 let
 fun even_then_length (acc, s) =
 if size s mod 2 = 0
 then acc + size s
 else acc
 in
 fold (even_then_length, 0, xs)
 end

