
CSE 341
Section 2

Spring 2019

Adapted from slides by Daniel Snitkovskiy, Nick Mooney, Nicholas Shahan, Patrick Larson, and Dan Grossman

Today’s Agenda

• Type synonyms

• Type generality

• Equality types

• Syntactic sugar

Type Synonyms

• What does int * int * int represent?

• In HW1 we called it a date

• Wouldn’t it be nice to reflect this representation in
the source code itself?

type date = int * int * int

type vs datatype
•datatype introduces a new type name, distinct

from all existing types

•type is just another name

datatype suit = Club | Diamond | Heart | Spade
datatype rank = Jack | Queen | King | Ace

 | Num of int

type card = suit * rank

Type Synonyms

Why?

• For now, just for convenience

• It doesn’t let us do anything new

Later in the course we will see another use related to
modularity.

Type Generality

Let’s revisit the “append” function...

fun append (xs, ys) =

 if null xs

 then ys

 else hd xs :: append(tl xs, ys)

Type Generality

• We would expect
string list * string list -> string list

‘a list * ‘a list -> ‘a list

• But the type checker found

• Why is this OK?

More General Types

• The type
‘a list * ‘a list -> ‘a list

string list * string list -> string list

 is more general than the type

 and “can be used” as any less general type, such as
int list * int list -> int list

• But it is not more general than the type
int list * string list -> int list

The Type Generality Rule

The “more general” rule:

A type t1 is more general than the type t2 if you can take
t1, replace its type variables consistently, and get t2

What does consistently mean?

Equality Types

Write a function called Contains that takes a value
and a list and returns true if the value is in the list...

What type will Contains have?

Equality Types
Let’s take a look at Contains...

fun contains(x, xs) =

 if null xs

 then false

 else(hd xs = x) orelse contains(x, tl xs)

Equality Types
• The double quoted variable arises from use of the
= operator

• We can use = on most types like int, bool, string,
tuples (that contain only “equality types”)

• Functions and real are not ”equality types”

• Generality rules work the same, except substitution
must be some type which can be compared with =

• You can ignore warnings about “calling polyEqual”

Syntactic Sugar

Syntactic Sugar

• Tuples are actually Records with fields 1~n
• If-then-else is implemented as syntactic sugar for a

case statement

If-then-else

• We’ve just covered case statements

• How could we implement if-then-else?
case x of
 true => “apple”
 | false => “banana”

if x then “apple” else “banana”

Adventures in pattern matching

• Shape example

• Function-pattern syntax if we get to it

