
CSE 341 AC
Yuma & Taylor
University of Washington

Section Overview

● Check-in on Homework 1
● Type synonyms
● Type generality
● Equality types
● Syntactic sugar

Type Synonyms

● In Homework 1, we represented a date as: (int * int * int)
● Now, we can tell SML that that is a date:

type date = (int * int * int)

● This is not a datatype:
○ No constructors.
○ No variants.
○ Completely interchangeable for (int * int * int).

Type Synonyms

● What is tomorrow’s type?
○ val tomorrow = fn : date -> date
○ val tomorrow = fn : (int * int * int) -> date
○ val tomorrow = fn : date -> (int * int * int)
○ val tomorrow = fn : (int * int * int) -> (int * int * int)

type date = (int * int * int)

fun tomorrow (d : date) : date = ...

Type Generality

Write a function that appends two string lists:

fun append (xs, ys) = ...

Type Generality

fun append (xs, ys) =

 case xs of

 [] => ys

 | x::xs' => x :: (append (xs', ys))

Type Generality

The type checker just told us that append’s type is:

val append = fn : ‘a list * ‘a list -> ‘a list

Why is it not:

val append = fn : string list * string list -> string list

More General Types

● ‘a is “more general” than string
● t1 is more general than t2 if:

○ You can replace its type variables consistently, and
○ You get t2

Example (replace ‘a with string):

● t1 : ‘a list * ‘a list -> ‘a list
● t2 : string list * string list -> string list

Equality Types

Write a function that determines if one element is contained in a list:

fun contains (x, xs) = ...

Equality Types

fun contains (x, xs) =

 case xs of

 [] => false

 | x'::xs' => x = x' orelse (contains (x, xs'))

Equality Types

The type checker just told us that contains’s type is:

val contains = fn : ‘‘a * ‘‘a list -> bool

Why is it not:

val contains = fn : ‘a list * ‘a list -> ‘a list

● ‘‘a is a type variable that is equipped with equality
● Another way to think about this: “on what types is equality well defined”?
● Some examples:

○ string, int, datatypes where all members are equality types

● Some counter-examples:
○ real, datatypes where not all members are equality types

● Note: ignore warnings about polyEqual

Equality Types

Fun fact: if then else is syntactic sugar

if then else is syntactic sugar for a case expression!

Write the following as a case expression:

if x then 5 else 10

Fun fact: if then else is syntactic sugar

if then else is syntactic sugar for a case expression!

Write the following as a case expression:

if x then 5 else 10

case x of
 true => 5
 | false => 10

Pattern matching example:

1. Let’s write a datatype shape which represents some 2D shapes, and
2. A function val area = fn : shape -> real which computes a

shape’s area.

datatype shape

datatype shape = square of real (* side length *)

 | rectangle of real * real (* dimensions *)

 | circle of real (* radius *)

val area = fn : shape -> real

fun area (s : shape) : real =

 case s of

 (Square l) => l * l

 | (Rectangle (x, y)) => x * y

 | (Circle r) => 3.14 * r * r

val area = fn : shape -> real

fun area (Square l) = l * l

 | area (Rectangle (x, y)) = x * x

 | area (Circle r) = 3.14 * r * r

