
CSE 341 AB
Section 2

(4/11)

Questions?

Agenda
1. Intros

2. Small Things

a. Syntactic Sugar
b. Function Tracing

3. Types!

a. Type Synonyms
b. Parametric Polymorphism
c. Type Generality
d. Equality Types

4. Variants

e. Syntactic Sugar
f. A Note on Patterns

g. Tracing

Please introduce yourself to someone you haven’t talked to yet!

E.g.

● What’s your name?

● Why are you taking 341?

● What do you do for fun?

● What’s your favorite programming language?

Intros

Sometimes we don’t change our core language to add new language constructs.

x andalso y

Syntactic Sugar

Sometimes we don’t change our core language to add new language constructs.

x andalso y

↓

if x then y else false

Syntactic Sugar

Sometimes we don’t change our core language to add new language constructs.

x andalso y

↓

if x then y else false

↓

case x of

 true => y

 | false => false

Syntactic Sugar

Sometimes we don’t change our core language to add new language constructs.

x orelse y

↓

if x then true else y

↓

case x of

 true => true

 | false => y

Syntactic Sugar

Function Tracing

Function Tracing
● Function tracing is simplified (for now!).

● In Unit 3 we will look at a more complex, but more accurate, representation.

When you visit a function binding, just map its name to fn.

fun foo (x: int) = x + 2;

foo 2

Function Tracing - Function Binding

id val

RES

foo fn

fun foo (x: int) = x + 2;

foo 2

Function Tracing - Function Call

id val

RES

foo fn

Visit the left- and right-hand sides of the function call.

fun foo (x: int) = x + 2;

foo 2

Function Tracing - Function Call

id val

RES

foo fn

foo 2

foo 2

foo 2

Once we’ve determined the function we need to call, create a new environment!

Extend it with the arguments to foo.

fun foo (x: int) = x + 2;

foo 2

Function Tracing - Function Call

id val

RES

foo fn

foo

id val

RES

x 2

foo 2

foo 2

foo 2

Evaluate the function body.

fun foo (x: int) = x + 2;

foo 2

x + 2

2 + 2

2 + 2

4

Function Tracing - Function Call

id val

RES

foo fn

foo

id val

RES

x 2

Save the result in RES.

fun foo (x: int) = x + 2;

foo 2

x + 2

2 + 2

2 + 2

4

Function Tracing - Function Call

id val

RES

foo fn

foo

id val

RES 4

x 2

We now know the value of the original call.

Destroy the environment and pass the value back.

fun foo (x: int) = x + 2;

foo 2

x + 2

2 + 2

2 + 2

4

Function Tracing - Function Call

id val

RES 4

foo fn

foo

id val

RES 4

x 2

variables bound outside a function body?

val y = 2;
fun foo (x: int) = x + y;
val y = 3;
foo 2

Function Tracing - But What About...

nested functions?

Function Tracing - But What About...

fun foo (x: int) =
let fun bar (y: int) = y * y
in

bar (x * x)
end;

foo 2

Find out next week!

Function Tracing - But What About...

Types

Type Synonyms

datatype suit = Club | Diamond | Heart | Spade
datatype rank = Jack | Queen | King | Ace
 | Num of int

type card = suit * rank

A synonym doesn’t add a new type name.
What’s the type of (Club, Jack)? Try it out!

In a World Without Parametric Polymorphism...
fun append_ints (xs : int list, ys : int list) =

case xs of
 [] => ys
 | x::xs => x::append(xs, ys)

fun append_strings (xs : string list, ys : string list) =
case xs of
 [] => ys
 | x::xs => x::append(xs, ys)

The code is the same, but every new data type requires a new function!

(Notice that we only use the inputs’ structures, not their values. This will become important in future weeks.)

What If… NOT VALID SML!!!
fun append (‘a) (xs : ‘a list, ys : ‘a list) =

case xs of
 [] => ys
 | x::xs => x::append(xs, ys)

What If… NOT VALID SML!!!
fun append (‘a) (xs : ‘a list, ys : ‘a list) =

case xs of
 [] => ys
 | x::xs => x::append(xs, ys)

append : forall ‘a, ‘a list * ‘a list -> ‘a list

What If… NOT VALID SML!!!
fun append (‘a) (xs : ‘a list, ys : ‘a list) =

case xs of
 [] => ys
 | x::xs => x::append(xs, ys)

val append_ints = append(int)
val append_strings = append(string)

append : forall ‘a, ‘a list * ‘a list -> ‘a list

append_ints : int list * int list -> int list
append_strings : string list * string list -> string list

What If… NOT VALID SML!!!
fun append (‘a) (xs : ‘a list, ys : ‘a list) =

case xs of
 [] => ys
 | x::xs => x::append(xs, ys)

val append_ints = append(int)
val append_strings = append(string)

append : forall ‘a, ‘a list * ‘a list -> ‘a list

Types in our expressions?!?! Take me back!

Luckily, SML has a restriction that means we don’t have to write this way:
forall can only appear at the beginning of a type.

But it’s useful to think about what’s going on under the hood.

What If… NOT VALID SML!!!
fun append (xs : ‘a list, ys : ‘a list) =

case xs of
 [] => ys
 | x::xs => x::append(xs, ys)

append : ‘a list * ‘a list -> ‘a list

You can use append with any type of list as long as both lists have the same type!

SML will do the right thing under the hood and insert type arguments for you.

What If… NOT VALID SML!!!
fun append (xs : ‘a list, ys : ‘a list) =

case xs of
 [] => ys
 | x::xs => x::append(xs, ys)

append : ‘a list * ‘a list -> ‘a list

Types with 0 or more type parameters are called type schemes.

For now, to get a concrete type from a type scheme, replace ALL instances of a
type parameter with a concrete type.

A type scheme, A, is more general than another type scheme, B, if every
concrete instantiation of B is also one of A.

We write A ⊑ B.

Don’t worry, we will refine this in the coming weeks!

Type Generality

Type Generality Examples

‘a list * ‘a list -> ‘a list ⊑ int list * int list -> int list

‘a list * ‘a list -> ‘a list !⊑ int list * string list -> int list

‘a list * ‘b list -> ‘a list ⊑ ‘a list * ‘a list -> ‘a list

‘a = int

‘a list * ‘a list -> ‘a list => int list * int list -> int list

‘a = string

‘a list * ‘a list -> ‘a list => string list * string list -> string list

‘a = int, b’ = bool

‘a * ‘b -> ‘b => int * bool -> bool

Equality Types

Write a list contains function…

Equality Types
● The double quoted variable arises from use of the = operator
● We can use = on most types like int, bool, string, tuples (that contain only

“equality types”)
● Functions and real are not ”equality types”
● Generality rules work the same, except substitution must be some type which

can be compared with =

!!! You can ignore warnings about “calling polyEqual”

Variants

Pattern Matching Syntactic Sugar
Demo!

PATTERNS ≠
EXPRESSIONS

_ x x + y

Patterns vs Expressions Examples

The pattern x adds a binding to the dynamic environment.

The expression x looks up a binding from the dynamic environment.

Patterns vs Expression Semantics Example

Tracing Pattern Matching

