
CSE 341
Section 1 (April 4th)

Lanhao Wu: Monday 3:30pm - 4:30pm, Gates 151

Alex Xu: Friday 10:30am - 12:00pm, Gates 151

Section slides adopted from AU18. Huge thanks to Danie Snitkovskiy for the slides!

Agenda
● Introduction

● Setup: get everything running

● Emacs Basics

● ML development workflow

● Shadowing

● Debugging

● Comparison Operators

● Boolean Operators

● Testing

Icebreaker Time!
What’s your name?

One fun fact of you. / What you’ve done during the spring break?

Introduction
Lanhao Wu

● BS/MS student at UW CSE, interest in NLP and PL!

● Third time TA CSE 341

● Enjoy cooking

● Use a lot, (However, only Emacs works best for SML 😭)

● Dongkai is my roommate

Not this one

Intr
odu

ctio
n

Dongkai/Alex/Sharpnel Xu
Interests:Comics

Gam
es

Messing with Johnny’s Slides

CS Senior

Bǃǃf ǾȆȆƿǶǃȮ

Lanhao

Numbers,
algorith

ms, m
ath

Memorizing meaningless things...

Ste
pM
ani
a/E
tte
rna
On
line

Took 341 two years ago,so relearning SML/Emacs

BlegBlegBlegBlegBlegBlegBlegBlegBlegBleg
BlegBlegBlegBlegBlegBlegBlegBlegBlegBleg
BlegBlegBlegBlegBlegBlegBlegBlegBleg

He told me to add a slide :P

Made
my ow

n gam
e...

Course Resources
We have a ton of course resources. Please use them!

If you get stuck or need help:

● Email the staff list! cse341-staff@cs.washington.edu

● Come to Office Hours (Every Weekday, see website)

We’re here for you

mailto:cse341-staff@cs.washington.edu

Setup
Excellent guide located on the course website:
https://courses.cs.washington.edu/courses/cse341/19sp/sml_emacs.pdf

You need 3 things installed:

● Emacs

● SML

● SML mode for Emacs

Emacs Basics
Don’t be scared!

Commands have particular notation: C-x means hold Ctrl while pressing x

Meta key is Alt (thus M-z means hold Alt, press z)

C-x C-s is Save File

C-x C-f is Open File

C-x C-c is Exit Emacs

C-g is Escape (Abort any partial command you may have entered)

ML Development Workflow
REPL means Read Eval Print Loop

You can type in any ML code you want, it will evaluate it

Useful to put code in .sml file for reuse

Every command must end in a semicolon (;)

Load .sml files into REPL with use command

Shadowing

val a = 1;
val b = 2;
val a = 3;

a -> 1
a -> 1, b -> 2
a -> 1, b -> 2, a -> 3

You can’t change a variable, but you can add another with the same name

When looking for a variable definition, most recent is always used

Shadowing is usually considered bad style

Shadowing
This behavior, along with use in the REPL can lead to confusing effects

Suppose I have the following program:

I load that into the REPL with use. Now, I decide to change my program, and I
delete a line, giving this:

I load that into the REPL without restarting the REPL. What goes wrong?

(Hint: what is the value of y?)

val x = 8;
val y = 2;

val x = 8;

Because of shadowing…

Always reopen the REPL when you need to reload a file.

● Use c-d to close the sml REPL
● Use c-c, c-s to reopen the sml REPL
● Then use “use” to load the file in
● You may use c-c, o to change the focus of Emacs

Something weird could happen…

Debugging

Errors can occur at 3 stages:

● Syntax: Your program is not “valid SML” in some (usually small and
annoyingly nitpicky) way

● Type Check: One of the type checking rules didn’t work out

● Runtime: Your program did something while running that it shouldn’t

The best way to debug is to read what you wrote carefully, and think about it.

SML Basic Math
Math operations:

● +
● -
● *
● / (for floats), e.g. (5.0 / 2.0), evaluates to 2.5
● div (for ints), e.g. (5 div 3), evaluates to 1
● mod (for ints), e.g. (5 mod 3), evaluates to 2
● ~ (negative), e.g. ~5

Comparison Operators
You can compare numbers in SML!

Each of these operators has 2 subexpressions of type int, and produces a bool

= (Equality) < (Less than) <= (Less than or
equal)

<> (Inequality) > (Greater than) >= (Greater than
or equal)

Boolean Operators
You can also perform logical operations over bools!

Operation Syntax Type-Checking Evaluation

andalso e1 andalso e2 e1 and e2 have
type bool

Same as Java’s
e1 && e2

orelse e1 orelse e2 e1 and e2 have
type bool

Same as Java’s
e1 || e2

not not e1 e1 has type bool Same as Java’s
!e1

Technical note: andalso/orelse are SML builtins as they use short-circuit evaluation.

Testing
We don’t have a unit testing framework (too much learning overhead)

You should still test your code!

For example:

val test1 = ((4 div 4) = 1);

