Function definitions

Functions: the most important building block in the whole course
 – Like Java methods, have arguments and result
 – But no classes, this, return, etc.

Example function binding:

(* Note: correct only if y>=0 *)

fun pow (x : int, y : int) =
 if y=0
 then 1
 else x * pow(x,y-1)

Note: The body includes a (recursive) function call: pow(x,y-1)
Example, extended

fun pow (x : int, y : int) =
 if y=0
 then 1
 else x * pow(x,y-1)

fun cube (x : int) =
 pow (x,3)

val sixtyfour = cube 4

val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
 – Example: `int * int -> int`
 – In expressions, * is multiplication: `x * pow(x,y-1)`

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for mutual recursion (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
Function bindings: 3 questions

• Syntax: \[\texttt{fun x0 (x1: t1, \ldots, xn: tn) = e} \]
 – (Will generalize in later lecture)

• Evaluation: \textit{A function is a value!} (No evaluation yet)
 – Adds \texttt{x0} to environment so \textit{later} expressions can \textit{call} it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding \texttt{x0 : (t1 * \ldots * tn) -> t} if:
 – Can type-check body \texttt{e} to have type \texttt{t} in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \texttt{x1 : t1, \ldots, xn : tn} (arguments with their types)
 • \texttt{x0 : (t1 * \ldots * tn) -> t} (for recursion)
More on type-checking

fun x0 (x1 : t1, …, xn : tn) = e

• New kind of type: (t1 * … * tn) -> t
 – Result type on right
 – The overall type-checking result is to give x0 this type in rest of program (unlike Java, not for earlier bindings)
 – Arguments can be used only in e (unsurprising)

• Because evaluation of a call to x0 will return result of evaluating e, the return type of x0 is the type of e

• The type-checker “magically” figures out t if such a t exists
 – Later lecture: Requires some cleverness due to recursion
 – More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

Syntax: \(e_0 (e_1, \ldots, e_n) \)

- (Will generalize later)
- Parentheses optional if there is exactly one argument

Type-checking:

If:

- \(e_0 \) has some type \((t_1 \times \ldots \times t_n) \rightarrow t \)
- \(e_1 \) has type \(t_1 \), \ldots, \(e_n \) has type \(t_n \)

Then:

- \(e_0 (e_1, \ldots, e_n) \) has type \(t \)

Example: \(\text{pow}(x, y-1) \) in previous example has type \text{int} \
Function-calls continued

\[\text{e}_0(\text{e}_1, \ldots, \text{e}_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(\text{e}_0 \) to a function \(\text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e \)

 – Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n \)

3. Result is evaluation of \(e \) in an environment extended to map \(x_1 \) to \(v_1 \), \(\ldots \), \(x_n \) to \(v_n \)

 – (“An environment” is actually the environment where the function was defined, and includes \(x_0 \) for recursion)
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
 – Now ways to build up data with multiple parts
 – This is essential
 – Java examples: classes with fields, arrays

Now:
 – Tuples: fixed “number of pieces” that may have different types

Then:
 – Lists: any “number of pieces” that all have the same type

Later:
 – Other more general ways to create compound data
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

• Syntax: \((e_1, e_2)\)

• Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 – A pair of values is a value

• Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 – A new kind of type
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Access:

- Syntax: \#1 e and \#2 e

- Evaluation: Evaluate e to a pair of values and return first or second piece
 - Example: If e is a variable x, then look up x in environment

- Type-checking: If e has type ta * tb, then \#1 e has type ta and \#2 e has type tb
Examples

Functions can take and return pairs

fun swap (pr : int*bool) =
 (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
 (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
 (x div y, x mod y)

fun sort_pair (pr : int*int) =
 if (#1 pr) < (#2 pr)
 then pr
 else (#2 pr, #1 pr)
Tuples

Actually, you can have *tuples* with more than two parts
– A new feature: a generalization of pairs

• \((e_1, e_2, \ldots, e_n)\)
• \(t_a \ast t_b \ast \ldots \ast t_n\)
• \(#1 \ e, \ #2 \ e, \ #3 \ e, \ \ldots\)

Homework 1 uses triples of type \(\text{int}^{\ast} \text{int}^{\ast} \text{int}\) a lot
Nesting

Pairs and tuples can be nested however you want
 – Not a new feature: implied by the syntax and semantics

```plaintext
val x1 = (7, (true, 9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1)   (* bool *)
val x3 = (#2 x1)      (* bool*int *)
val x4 = ((3,5), ((4,8), (0,0)))
       (* (int*int)*)((int*int)*)((int*int)) *)
```
Lists

• Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

In contrast, a list:
 – Can have any number of elements
 – But all list elements have the same type

Need ways to build lists and access the pieces…
Building Lists

- The empty list is a value:

 \[
 []
 \]

- In general, a list of values is a value; elements separated by commas:

 \[v_1, v_2, \ldots, v_n]\n
- If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1, \ldots, v_n]\), then \(e_1::e_2\) evaluates to \([v, \ldots, v_n]\)

 \(e_1::e_2\) (* pronounced "cons" *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- **null e** evaluates to true if and only if e evaluates to []

- If e evaluates to [v1,v2,…,vn] then **hd e** evaluates to v1
 - (raise exception if e evaluates to [])

- If e evaluates to [v1,v2,…,vn] then **tl e** evaluates to [v2,…,vn]
 - (raise exception if e evaluates to [])
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type t, the type t list describes lists where all elements have type t

- Examples: int list bool list int list list
 (int * int) list (int list * int) list

- So [] can have type t list list for any type
 - SML uses type 'a list to indicate this (“quote a” or “alpha”)
- For e1::e2 to type-check, we need a t such that e1 has type t and e2 has type t list. Then the result type is t list

- null : 'a list -> bool
- hd : 'a list -> 'a
- tl : 'a list -> 'a list
Example list functions

```ml
fun sum_list (xs : int list) = 
  if null xs 
  then 0 
  else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) = 
  if x=0 
  then [] 
  else x :: countdown (x-1)

fun append (xs : int list, ys : int list) = 
  if null xs 
  then ys 
  else hd (xs) :: append (tl(xs), ys)
```

Recursion again

Functions over lists are usually recursive
 – Only way to “get to all the elements”

• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

```ml
fun sum_pair_list (xs : (int*int) list) = 
  if null xs 
  then 0 
  else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) = 
  if null xs 
  then [] 
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) = 
  if null xs 
  then [] 
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) =
  (sum_list (firsts xs)) + (sum_list (seconds xs))
```