Typical workflow

Concrete syntax (string)
"(fn x => x + x) 4"

Abstract syntax (tree)

Call
Function
Constant
4

Var
x
x

Type checking?

Possible errors / warnings

Rest of implementation

Typical workflow

Concrete syntax (string)
"(fn x => x + x) 4"

Abstract syntax (tree)

Call
Function
Constant
4

Var
x
x

Type checking?

Possible errors / warnings

Rest of implementation

Interpretion or compiler

So "rest of implementation" takes the abstract syntax tree (AST) and "runs the program" to produce a result.

Fundamentally, two approaches to implement a PL B:

- **Write an interpreter** in another language A:
 - Better names: evaluator, executor
 - Take a program in B and produce an answer (in B)
- **Write a compiler** in another language A to a third language C:
 - Better name: translator
 - Translation must *preserve meaning* (equivalence)

We call A the metalanguage
- Crucial to keep A and B straight

Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options
- But in modern practice have both and multiple layers

A plausible example:
- Java compiler to bytecode intermediate language
- Have an interpreter for bytecode (itself in binary), but compile frequent functions to binary at run-time
- The chip is itself an interpreter for binary
 - Well, except these days the x86 has a translator in hardware to more primitive micro-operations it then executes

DrRacket uses a similar mix

Sermon

Interpreter versus compiler versus combinations is about a particular language implementation, not the language definition

So there is no such thing as a "compiled language" or an "interpreted language"
- Programs cannot "see" how the implementation works

Unfortunately, you often hear such phrases
- "C is faster because it’s compiled and LISP is interpreted"
- This is nonsense; politely correct people
- (Admittedly, languages with "eval" must "ship with some implementation of the language" in each program)
Skipping parsing

• If implementing PL B in PL A, we can skip parsing
 – Have B programmers write ASTs directly in PL A
 – Not so bad with ML constructors or Racket structs
 – Embeds B programs as trees in A

Already did an example!

• Let the metalanguage A = Racket
• Let the language-implemented B = “Arithmetic Language”
• Arithmetic programs written with calls to Racket constructors
• The interpreter is eval-exp

Legal ASTs

• “Trees the interpreter must handle” are a subset of all the trees
 Racket allows as a dynamically typed language

Interpreted results

• Our interpreters return expressions, but not any expressions
 – Result should always be a value, a kind of expression that evaluates to itself
 – If not, the interpreter has a bug
• So far, only values are from const, e.g., (const 17)
• But a larger language has more values than just numbers
 – Booleans, strings, etc.
 – Pairs of values (definition of value recursive)
 – Closures
 – ...

Example

See code for language that adds booleans, number-comparison,
and conditionals:

(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (el e2) #:transparent)
(struct multiply (el e2) #:transparent)

What if the program is a legal AST, but evaluation of it tries to use
the wrong kind of value?
 – For example, “add a boolean”
 – You should detect this and give an error message not in terms of the interpreter implementation
 – Means checking a recursive result whenever a particular kind of value is needed
 • No need to check if any kind of value is okay
Dealing with variables

- Interpreters so far have been for languages without variables
 - No let-expressions, functions-with-arguments, etc.
 - Language in homework has all these things

- This segment describes in English what to do
 - Up to you to translate this to code

- Fortunately, what you have to implement is what we have been stressing since the very, very beginning of the course

The Set-up

So now a recursive helper function has all the interesting stuff:

\[
\text{(define (eval-under-env e env)}
\]

\[
\text{(cond ... ; case for each kind of expression)}
\]

- Recursive calls must “pass down” correct environment

Then \text{eval-exp} just calls \text{eval-under-env} with same expression and the empty environment

On homework, environments themselves are just Racket lists containing Racket pairs of a string (the MUPL variable name, e.g., “x”) and a MUPL value (e.g., (int 17))

A grading detail

- Stylistically \text{eval-under-env} would be a helper function one could define locally inside \text{eval-exp}

- But do not do this on your homework
 - We have grading tests that call \text{eval-under-env} directly, so we need it at top-level

The best part

- The most interesting and mind-bending part of the homework is that the language being implemented has first-class closures
 - With lexical scope of course

- Fortunately, what you have to implement is what we have been stressing since we first learned about closures...

Higher-order functions

The “magic”: How do we use the “right environment” for lexical scope when functions may return other functions, store them in data structures, etc.?

Lack of magic: The interpreter uses a closure data structure (with two parts) to keep the environment it will need to use later

\[
\text{(struct closure (env fun) #:transparent)}
\]

Evaluate a function expression:
- A function is not a value; a closure is a value
 - Evaluating a function returns a closure
 - Create a closure out of (a) the function and (b) the current environment when the function was evaluated

Evaluate a function call:

...
Function calls

- Use current environment to evaluate \(e_1 \) to a closure
 - Error if result is a value that is not a closure
- Use current environment to evaluate \(e_2 \) to a value
- Evaluate closure’s function’s body in the closure’s environment, extended to:
 - Map the function’s argument-name to the argument-value
 - And for recursion, map the function’s name to the whole closure

This is the same semantics we learned a few weeks ago “coded up”

Given a closure, the code part is only ever evaluated using the environment part (extended), not the environment at the call-site

Is that expensive?

- **Time** to build a closure is tiny; a struct with two fields
- Space to store closures might be large if environment is large
 - But environments are immutable, so natural and correct to have lots of sharing, e.g., of list tails (cf. lecture 3)
 - Still, end up keeping around bindings that are not needed
- Alternative used in practice: When creating a closure, store a possibly-smaller environment holding only the variables that are free variables in the function body
 - Free variables: Variables that occur, not counting shadowed uses of the same variable name
 - A function body would never need anything else from the environment

Free variables examples

- \(\text{(lambda } (x y z) \{x, y, z\}) \)
- \(\text{(lambda } (x) (+ x y z)) \{y, z\} \)
- \(\text{(lambda } (x) (if x y z)) \{y, z\} \)
- \(\text{(lambda } (x) \text{(let } ([y 0]) (+ x y z))) \{z\} \)
- \(\text{(lambda } (x y z) (+ x y z)) \{\} \)
- \(\text{(lambda } (x) (+ y \text{(let } ([y z]) (+ y y)))) \{y, z\} \)

Computing free variables

- So does the interpreter have to analyze the code body every time it creates a closure?
 - No: Before evaluation begins, compute free variables of every function in program and store this information with the function
 - Compared to naïve store-entire-environment approach, building a closure now takes more time but less space
 - And time proportional to number of free variables
 - And various optimizations are possible
 - [Also use a much better data structure for looking up variables than a list]

Optional: compiling higher-order functions

- If we are compiling to a language without closures (like assembly), cannot rely on there being a “current environment”
- So compile functions by having the translation produce “regular” functions that all take an extra explicit argument called “environment”
 - And compiler replaces all uses of free variables with code that looks up the variable using the environment argument
 - Can make these fast operations with some tricks
 - Running program still creates closures and every function call passes the closure’s environment to the closure’s code

Recall…

Our approach to language implementation:

- Implementing language B in language A
- Skipping parsing by writing language B programs directly in terms of language A constructors
- An interpreter written in A recursively evaluates

What we know about macros:

- Extend the syntax of a language
- Use of a macro expands into language syntax before the program is run, i.e., before calling the main interpreter function
Put it together

With our set-up, we can use language A (i.e., Racket) functions that produce language B abstract syntax as language B "macros"

- Language B programs can use the "macros" as though they are part of language B
- No change to the interpreter or struct definitions
- Just a programming idiom enabled by our set-up
 - Helps teach what macros are
- See code for example "macro" definitions and "macro" uses
 - "macro expansion" happens before calling `eval-exp`

Hygiene issues

- Earlier we had material on hygiene issues with macros
 - (Among other things), problems with shadowing variables when using local variables to avoid evaluating expressions more than once
- The "macro" approach described here does not deal well with this