
CSE341: Programming Languages

Lecture 17
Implementing Languages Including

Closures

Dan Grossman
Spring 2019

Typical workflow

Spring 2019 2CSE341: Programming Languages

"(fn x => x + x) 4"
Parsing

Call

Function

+

Constant

4x

x x
Var Var Type checking?

Possible
errors /
warnings

Rest of implementation

Possible
errors /
warningsconcrete syntax (string)

abstract syntax (tree)

Interpreter or compiler

So “rest of implementation” takes the abstract syntax tree (AST)
and “runs the program” to produce a result

Fundamentally, two approaches to implement a PL B:

• Write an interpreter in another language A
– Better names: evaluator, executor
– Take a program in B and produce an answer (in B)

• Write a compiler in another language A to a third language C
– Better name: translator
– Translation must preserve meaning (equivalence)

We call A the metalanguage
– Crucial to keep A and B straight

Spring 2019 3CSE341: Programming Languages

Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options
– But in modern practice have both and multiple layers

A plausible example:
– Java compiler to bytecode intermediate language
– Have an interpreter for bytecode (itself in binary), but

compile frequent functions to binary at run-time
– The chip is itself an interpreter for binary

• Well, except these days the x86 has a translator in
hardware to more primitive micro-operations it then
executes

DrRacket uses a similar mix

Spring 2019 4CSE341: Programming Languages

Sermon

Interpreter versus compiler versus combinations is about a
particular language implementation, not the language definition

So there is no such thing as a “compiled language” or an
“interpreted language”

– Programs cannot “see” how the implementation works

Unfortunately, you often hear such phrases
– “C is faster because it’s compiled and LISP is interpreted”
– This is nonsense; politely correct people

– (Admittedly, languages with “eval” must “ship with some
implementation of the language” in each program)

Spring 2019 5CSE341: Programming Languages

Typical workflow

Spring 2019 6CSE341: Programming Languages

"(fn x => x + x) 4"
Parsing

Call

Function

+

Constant

4x

x x
Var Var Type checking?

Possible
errors /
warnings

Rest of implementation

Possible
errors /
warningsconcrete syntax (string)

abstract syntax (tree)

Skipping parsing

• If implementing PL B in PL A, we can skip parsing
– Have B programmers write ASTs directly in PL A
– Not so bad with ML constructors or Racket structs
– Embeds B programs as trees in A

Spring 2019 7CSE341: Programming Languages

; define B’s abstract syntax
(struct call …)
(struct function …)
(struct var …)
…

; example B program
(call (function (list "x")

(add (var "x")
(var "x")))

(const 4))

Call

Function

+

Constant

4x

x x
Var Var

Already did an example!

• Let the metalanguage A = Racket
• Let the language-implemented B = “Arithmetic Language”
• Arithmetic programs written with calls to Racket constructors
• The interpreter is eval-exp

Spring 2019 8CSE341: Programming Languages

(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)

(define (eval-exp e)
(cond [(const? e) e]

[(negate? e)
(const (- (const-int

(eval-exp (negate-e e)))))]
[(add? e) …]
[(multiply? e) …]…

Racket data structure is
Arithmetic Language
program, which
eval-exp runs

What we know

• Define (abstract) syntax of language B with Racket structs
– B called MUPL in homework

• Write B programs directly in Racket via constructors
• Implement interpreter for B as a (recursive) Racket function

Now, a subtle-but-important distinction:
– Interpreter can assume input is a “legal AST for B”

• Okay to give wrong answer or inscrutable error otherwise
– Interpreter must check that recursive results are the right

kind of value
• Give a good error message otherwise

Spring 2019 9CSE341: Programming Languages

Legal ASTs
• “Trees the interpreter must handle” are a subset of all the trees

Racket allows as a dynamically typed language

• Can assume “right types” for struct fields
– const holds a number
– negate holds a legal AST
– add and multiply hold 2 legal ASTs

• Illegal ASTs can “crash the interpreter” – this is fine

Spring 2019 10CSE341: Programming Languages

(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)

(multiply (add (const 3) "uh-oh") (const 4))
(negate -7)

Interpreter results

• Our interpreters return expressions, but not any expressions
– Result should always be a value, a kind of expression that

evaluates to itself
– If not, the interpreter has a bug

• So far, only values are from const, e.g., (const 17)

• But a larger language has more values than just numbers
– Booleans, strings, etc.
– Pairs of values (definition of value recursive)
– Closures
– …

Spring 2019 11CSE341: Programming Languages

Example
See code for language that adds booleans, number-comparison,
and conditionals:

What if the program is a legal AST, but evaluation of it tries to use
the wrong kind of value?

– For example, “add a boolean”
– You should detect this and give an error message not in

terms of the interpreter implementation
– Means checking a recursive result whenever a particular

kind of value is needed
• No need to check if any kind of value is okay

Spring 2019 12CSE341: Programming Languages

(struct bool (b) #:transparent)
(struct eq-num (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3) #:transparent)

Dealing with variables

• Interpreters so far have been for languages without variables
– No let-expressions, functions-with-arguments, etc.
– Language in homework has all these things

• This segment describes in English what to do
– Up to you to translate this to code

• Fortunately, what you have to implement is what we have been
stressing since the very, very beginning of the course

Spring 2019 13CSE341: Programming Languages

Dealing with variables

• An environment is a mapping from variables (Racket strings) to
values (as defined by the language)
– Only ever put pairs of strings and values in the environment

• Evaluation takes place in an environment
– Environment passed as argument to interpreter helper function
– A variable expression looks up the variable in the environment
– Most subexpressions use same environment as outer

expression
– A let-expression evaluates its body in a larger environment

Spring 2019 14CSE341: Programming Languages

The Set-up

So now a recursive helper function has all the interesting stuff:

– Recursive calls must “pass down” correct environment

Then eval-exp just calls eval-under-env with same
expression and the empty environment

On homework, environments themselves are just Racket lists
containing Racket pairs of a string (the MUPL variable name, e.g.,
"x") and a MUPL value (e.g., (int 17))

Spring 2019 15CSE341: Programming Languages

(define (eval-under-env e env)
(cond … ; case for each kind of
)) ; expression

A grading detail

• Stylistically eval-under-env would be a helper function one
could define locally inside eval-exp

• But do not do this on your homework
– We have grading tests that call eval-under-env directly,

so we need it at top-level

Spring 2019 16CSE341: Programming Languages

The best part

• The most interesting and mind-bending part of the homework is
that the language being implemented has first-class closures
– With lexical scope of course

• Fortunately, what you have to implement is what we have been
stressing since we first learned about closures…

Spring 2019 17CSE341: Programming Languages

Higher-order functions
The “magic”: How do we use the “right environment” for lexical
scope when functions may return other functions, store them in
data structures, etc.?

Lack of magic: The interpreter uses a closure data structure (with
two parts) to keep the environment it will need to use later

Evaluate a function expression:
– A function is not a value; a closure is a value

• Evaluating a function returns a closure
– Create a closure out of (a) the function and (b) the current

environment when the function was evaluated

Evaluate a function call:
– …

Spring 2019 18CSE341: Programming Languages

(struct closure (env fun) #:transparent)

Function calls

• Use current environment to evaluate e1 to a closure
– Error if result is a value that is not a closure

• Use current environment to evaluate e2 to a value
• Evaluate closure’s function’s body in the closure’s environment,

extended to:
– Map the function’s argument-name to the argument-value
– And for recursion, map the function’s name to the whole closure

This is the same semantics we learned a few weeks ago “coded up”

Given a closure, the code part is only ever evaluated using the
environment part (extended), not the environment at the call-site

Spring 2019 19CSE341: Programming Languages

(call e1 e2)

Is that expensive?

• Time to build a closure is tiny: a struct with two fields

• Space to store closures might be large if environment is large
– But environments are immutable, so natural and correct to

have lots of sharing, e.g., of list tails (cf. lecture 3)
– Still, end up keeping around bindings that are not needed

• Alternative used in practice: When creating a closure, store a
possibly-smaller environment holding only the variables that are
free variables in the function body
– Free variables: Variables that occur, not counting shadowed

uses of the same variable name
– A function body would never need anything else from the

environment
Spring 2019 20CSE341: Programming Languages

Free variables examples

(lambda () (+ x y z)) ; {x, y, z}

(lambda (x) (+ x y z)) ; {y, z}

(lambda (x) (if x y z)) ; {y, z}

(lambda (x) (let ([y 0]) (+ x y z))) ; {z}

(lambda (x y z) (+ x y z)) ; {}

(lambda (x) (+ y (let ([y z]) (+ y y)))) ; {y, z}

Spring 2019 21CSE341: Programming Languages

Computing free variables

• So does the interpreter have to analyze the code body every
time it creates a closure?

• No: Before evaluation begins, compute free variables of every
function in program and store this information with the function

• Compared to naïve store-entire-environment approach, building
a closure now takes more time but less space
– And time proportional to number of free variables
– And various optimizations are possible

• [Also use a much better data structure for looking up variables
than a list]

Spring 2019 22CSE341: Programming Languages

Optional: compiling higher-order functions

• If we are compiling to a language without closures (like
assembly), cannot rely on there being a “current environment”

• So compile functions by having the translation produce “regular”
functions that all take an extra explicit argument called
“environment”

• And compiler replaces all uses of free variables with code that
looks up the variable using the environment argument
– Can make these fast operations with some tricks

• Running program still creates closures and every function call
passes the closure’s environment to the closure’s code

Spring 2019 23CSE341: Programming Languages

Recall…

Our approach to language implementation:

• Implementing language B in language A
• Skipping parsing by writing language B programs directly in

terms of language A constructors
• An interpreter written in A recursively evaluates

What we know about macros:

• Extend the syntax of a language
• Use of a macro expands into language syntax before the

program is run, i.e., before calling the main interpreter function

Spring 2019 24CSE341: Programming Languages

Put it together

With our set-up, we can use language A (i.e., Racket) functions that
produce language B abstract syntax as language B “macros”

– Language B programs can use the “macros” as though they
are part of language B

– No change to the interpreter or struct definitions

– Just a programming idiom enabled by our set-up
• Helps teach what macros are

– See code for example “macro” definitions and “macro” uses
• “macro expansion” happens before calling eval-exp

Spring 2019 25CSE341: Programming Languages

Hygiene issues

• Earlier we had material on hygiene issues with macros
– (Among other things), problems with shadowing variables

when using local variables to avoid evaluating expressions
more than once

• The “macro” approach described here does not deal well with this

Spring 2019 26CSE341: Programming Languages

	CSE341: Programming Languages��Lecture 17�Implementing Languages Including Closures
	Typical workflow
	Interpreter or compiler
	Reality more complicated
	Sermon
	Typical workflow
	Skipping parsing
	Already did an example!
	What we know
	Legal ASTs
	Interpreter results
	Example
	Dealing with variables
	Dealing with variables
	The Set-up
	A grading detail
	The best part
	Higher-order functions
	Function calls
	Is that expensive?
	Free variables examples
	Computing free variables
	Optional: compiling higher-order functions
	Recall…
	Put it together
	Hygiene issues

