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Interpreter or compiler

So “rest of implementation” takes the abstract syntax tree (AST) 
and “runs the program” to produce a result

Fundamentally, two approaches to implement a PL  B:

• Write an interpreter in another language A
– Better names: evaluator, executor
– Take a program in B and produce an answer (in B)

• Write a compiler in another language A to a third language C
– Better name: translator
– Translation must preserve meaning (equivalence)

We call A the metalanguage
– Crucial to keep A and B straight
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Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options
– But in modern practice have both and multiple layers

A plausible example:
– Java compiler to bytecode intermediate language
– Have an interpreter for bytecode (itself in binary), but 

compile frequent functions to binary at run-time
– The chip is itself an interpreter for binary

• Well, except these days the x86 has a translator in 
hardware to more primitive micro-operations it then 
executes

DrRacket uses a similar mix
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Sermon

Interpreter versus compiler versus combinations is about a 
particular language implementation, not the language definition

So there is no such thing as a “compiled language” or an 
“interpreted language”

– Programs cannot “see” how the implementation works

Unfortunately, you often hear such phrases
– “C is faster because it’s compiled and LISP is interpreted”
– This is nonsense; politely correct people

– (Admittedly, languages with “eval” must “ship with some 
implementation of the language” in each program)
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Typical workflow
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Skipping parsing

• If implementing PL B in PL A, we can skip parsing
– Have B programmers write ASTs directly in PL A
– Not so bad with ML constructors or Racket structs
– Embeds B programs as trees in A
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; define B’s abstract syntax
(struct call …)
(struct function …)
(struct var …)
…

; example B program
(call (function (list "x")
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Already did an example!

• Let the metalanguage A = Racket
• Let the language-implemented B = “Arithmetic Language”
• Arithmetic programs written with calls to Racket constructors
• The interpreter is eval-exp
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(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)

(define (eval-exp e)
(cond [(const? e) e]

[(negate? e)
(const (- (const-int

(eval-exp (negate-e e)))))]
[(add? e) …]
[(multiply? e) …]…

Racket data structure is 
Arithmetic Language
program, which    
eval-exp runs



What we know

• Define (abstract) syntax of language B with Racket structs
– B called MUPL in homework

• Write B programs directly in Racket via constructors
• Implement interpreter for B as a (recursive) Racket function

Now, a subtle-but-important distinction:
– Interpreter can assume input is a “legal AST for B”

• Okay to give wrong answer or inscrutable error otherwise
– Interpreter must check that recursive results are the right 

kind of value
• Give a good error message otherwise
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Legal ASTs
• “Trees the interpreter must handle” are a subset of all the trees 

Racket allows as a dynamically typed language

• Can assume “right types” for struct fields
– const holds a number
– negate holds a legal AST
– add and multiply hold 2 legal ASTs

• Illegal ASTs can “crash the interpreter” – this is fine
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(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)

(multiply (add (const 3) "uh-oh") (const 4))
(negate -7)



Interpreter results

• Our interpreters return expressions, but not any expressions
– Result should always be a value, a kind of expression that 

evaluates to itself
– If not, the interpreter has a bug

• So far, only values are from const, e.g., (const 17)

• But a larger language has more values than just numbers
– Booleans, strings, etc.
– Pairs of values (definition of value recursive)
– Closures
– …
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Example
See code for language that adds booleans, number-comparison, 
and conditionals:

What if the program is a legal AST, but evaluation of it tries to use 
the wrong kind of value?

– For example, “add a boolean”
– You should detect this and give an error message not in 

terms of the interpreter implementation
– Means checking a recursive result whenever a particular 

kind of value is needed
• No need to check if any kind of value is okay
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(struct bool (b) #:transparent)
(struct eq-num (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3) #:transparent)



Dealing with variables

• Interpreters so far have been for languages without variables
– No let-expressions, functions-with-arguments, etc.
– Language in homework has all these things

• This segment describes in English what to do
– Up to you to translate this to code

• Fortunately, what you have to implement is what we have been 
stressing since the very, very beginning of the course
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Dealing with variables

• An environment is a mapping from variables (Racket strings) to 
values (as defined by the language)
– Only ever put pairs of strings and values in the environment

• Evaluation takes place in an environment
– Environment passed as argument to interpreter helper function
– A variable expression looks up the variable in the environment
– Most subexpressions use same environment as outer 

expression
– A let-expression evaluates its body in a larger environment
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The Set-up

So now a recursive helper function has all the interesting stuff:

– Recursive calls must “pass down” correct environment

Then eval-exp just calls eval-under-env with same 
expression and the empty environment

On homework, environments themselves are just Racket lists 
containing Racket pairs of a string (the MUPL variable name, e.g., 
"x") and a MUPL value (e.g., (int 17))
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(define (eval-under-env e env)
(cond … ; case for each kind of 
))     ; expression



A grading detail

• Stylistically eval-under-env would be a helper function one 
could define locally inside eval-exp

• But do not do this on your homework
– We have grading tests that call eval-under-env directly, 

so we need it at top-level
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The best part

• The most interesting and mind-bending part of the homework is 
that the language being implemented has first-class closures
– With lexical scope of course

• Fortunately, what you have to implement is what we have been 
stressing since we first learned about closures…

Spring 2019 17CSE341: Programming Languages



Higher-order functions
The “magic”: How do we use the “right environment” for lexical 
scope when functions may return other functions, store them in 
data structures, etc.?

Lack of magic: The interpreter uses a closure data structure (with 
two parts) to keep the environment it will need to use later

Evaluate a function expression:
– A function is not a value; a closure is a value

• Evaluating a function returns a closure
– Create a closure out of (a) the function and (b) the current 

environment when the function was evaluated

Evaluate a function call:
– …
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(struct closure (env fun) #:transparent)



Function calls

• Use current environment to evaluate e1 to a closure
– Error if result is a value that is not a closure

• Use current environment to evaluate e2 to a value
• Evaluate closure’s function’s body in the closure’s environment, 

extended to:
– Map the function’s argument-name to the argument-value
– And for recursion, map the function’s name to the whole closure

This is the same semantics we learned a few weeks ago “coded up”

Given a closure, the code part is only ever evaluated using the 
environment part (extended), not the environment at the call-site
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(call e1 e2)



Is that expensive?

• Time to build a closure is tiny: a struct with two fields

• Space to store closures might be large if environment is large
– But environments are immutable, so natural and correct to 

have lots of sharing, e.g., of list tails (cf. lecture 3)
– Still, end up keeping around bindings that are not needed

• Alternative used in practice:  When creating a closure, store a 
possibly-smaller environment holding only the variables that are 
free variables in the function body
– Free variables: Variables that occur, not counting shadowed 

uses of the same variable name
– A function body would never need anything else from the 

environment
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Free variables examples

(lambda () (+ x y z))   ; {x, y, z}

(lambda (x) (+ x y z))  ; {y, z}

(lambda (x) (if x y z)) ; {y, z}

(lambda (x) (let ([y 0]) (+ x y z))) ; {z}

(lambda (x y z) (+ x y z)) ; {}

(lambda (x) (+ y (let ([y z]) (+ y y)))) ; {y, z}
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Computing free variables

• So does the interpreter have to analyze the code body every 
time it creates a closure?

• No: Before evaluation begins, compute free variables of every 
function in program and store this information with the function

• Compared to naïve store-entire-environment approach, building 
a closure now takes more time but less space
– And time proportional to number of free variables
– And various optimizations are possible

• [Also use a much better data structure for looking up variables 
than a list]
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Optional: compiling higher-order functions

• If we are compiling to a language without closures (like 
assembly), cannot rely on there being a “current environment”

• So compile functions by having the translation produce “regular” 
functions that all take an extra explicit argument called 
“environment”

• And compiler replaces all uses of free variables with code that 
looks up the variable using the environment argument
– Can make these fast operations with some tricks

• Running program still creates closures and every function call 
passes the closure’s environment to the closure’s code
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Recall…

Our approach to language implementation:

• Implementing language B in language A
• Skipping parsing by writing language B programs directly in 

terms of language A constructors
• An interpreter written in A recursively evaluates 

What we know about macros:

• Extend the syntax of a language
• Use of a macro expands into language syntax before the 

program is run, i.e., before calling the main interpreter function
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Put it together

With our set-up, we can use language A (i.e., Racket) functions that 
produce language B abstract syntax as language B “macros”

– Language B programs can use the “macros” as though they 
are part of language B

– No change to the interpreter or struct definitions

– Just a programming idiom enabled by our set-up
• Helps teach what macros are

– See code for example “macro” definitions and “macro” uses
• “macro expansion” happens before calling eval-exp
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Hygiene issues

• Earlier we had material on hygiene issues with macros
– (Among other things), problems with shadowing variables 

when using local variables to avoid evaluating expressions 
more than once

• The “macro” approach described here does not deal well with this
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