
Section 6: Racket intro

Lanhao Wu
Oct 31st 2019

Slides adopted from Porter Jones’s

Agenda

● Basic Racket Review
● Memorization
● Mutation
● Stream

Fibonacci case study:

Let’s write a function to calculate nth fibonacci number!

(define (fibonacci x)
 (if (or (= x 1) (= x 2))
 1
 (+ (fibonacci (- x 1))
 (fibonacci (- x 2)))))

Memoization

● Why compute the same recursive call for a function twice when there are no
major side-effects?

● Memoization is a way to “remember” previous calls

● Requires a way for the function to store both the input and the result of
previous calls to that function

Lexical-scope and mutation

(define count-calls-correct
 (let [(count 0)]
 (lambda ()
 (begin (set! count (+ count 1)) count))))

(define count-calls-wrong
 (lambda ()
 (let [(count 0)]
 (begin (set! count (+ count 1)) count))))

What’s the difference

Associative Lists

● List of key/value pairs!
● Racket has a built in function assoc that takes a value (key), and a list, and

returns the first pair with the given key it finds in the given list (false if there is
no pair with the given key).

(define my-list (list (cons 1 2) (cons 3 4)))
(assoc 1 my-list) ; returns the pair ‘(1 . 2)
(assoc 4 my-list) ; returns #f

Putting it all together… a better fibonacci
(define memo-fibonacci
 (letrec([memo null]
 [f (lambda (x)
 (let ([ans (assoc x memo)])
 (if ans
 (cdr ans) ; return memoized answer
 (let ([new-ans (if (or (= x 1) (= x 2))
 1
 (+ (f (- x 1))
 (f (- x 2))))])
 (begin
 (set! memo (cons (cons x new-ans) memo))
 new-ans)))))])
 f))

Mutable Lists

● Similar to regular lists and pairs but not the same datatype.
○ Mutable pairs have type mpair. Use mcons for creation, mcar to get the

first thing and mcdr for the second

● set-car! and set-cdr! actually change the “fields” of a mpair

● Use mutable types only when necessary! Prefer immutable!

Mutable Lists Example

(define mp (mcons 1 (mcons 2 null)))
(mpair? mp) ; #t
(mcar mp) ; get the first element in mp (car won’t work!)
(mcdr mp) ; get the second element in mp (cdr won’t work!)
(set-mcar! mp 5) ; change head of list in mp to 5
(set-mcdr! mp (mcons 3 null)) ; change tail list of mp

Streams

● A function that when evaluated results in a pair with a value in the car and another
stream in the cdr

● Create an infinitely long stream of values!

(define natural-numbers
 (letrec ([next-nat (lambda (x)
 (cons x (lambda ()

(next-nat (+ x 1)))))]) ; return next
pair

 (lambda () (next-nat 0)))) ; "seed" the stream

Exercise

Write a fibonacci stream!

