
CSE 341: Section 9
Yuma & Taylor
University of Washington

Overview

● Homework(s) 5 & 6 check-in, reminder about homework 7
● Double dispatch
● Mixins
● Visitor Pattern

Double dispatch

Double dispatch: overview

What is dispatch? It’s the runtime procedure used to determine which function
to invoke based on given parameters.

● Single Dispatch: use self (c.f., Java’s this) to determine which method
to invoke.

● Double Dispatch: use the runtime class of both self and a single method
parameter.

Double dispatch: emulating in Ruby

Ruby does not natively support double-dispatch, so we emulate it by doing
single-dispatch twice.

1. Have the principal method immediately call another method on its
argument, passing self as an argument to that method.

2. The second call now knows...
a. (Implicitly) the class of self
b. (Explicitly) the class of the argument, based on the method that was called

Double dispatch: example

Even Odd

Even Even Even

Odd Even Odd

Double dispatch: programming

Demo!

Double dispatch: Ruby example

class Even

 def mult(m)

 m.mult_even self

 end

 def mult_even(m)

 Even.new(n * m.n)

 end

 def mult_odd(m)

 Even.new(n * m.n)

 end

end

class Odd

 def mult(m)

 m.mult_odd self

 end

 def mult_even(m)

 Even.new(n * m.n)

 end

 def mult_odd(m)

 Odd.new(n * m.n)

 end

end

Double dispatch: SML example

datatype parity = Even of int | Odd of int

fun make_num n =
 case (n mod 2) of
 0 => Even n
 | _ => Odd n

fun mult m n =
 case (m, n) of
 (Even m, Even n) => Even (m * n)
 | (Even m, Odd n) => Even (m * n)
 | (Odd m, Even n) => Even (m * n)
 | (Odd m, Odd n) => Odd (m * n)

Mixins

Mixins: overview

● A mixin is a collection of methods
○ Ruby modules and mixins are the same thing

● Different from a class because you cannot make an instance of a mixin
○ In Ruby (and many languages), usually a class can only have one superclass but can

include any number of mixins

● Including a mixin in a class:
○ Makes the methods in the mixin part of the class
○ Methods in the mixin can reference methods and instance variables on self that are not

defined in the mixin

Mixin Example

Mixins
module Doubler
 def double
 self + self
 end
end

Questionable style but
still interesting...

class Fixnum
 include Doubler
end

class String
 include Doubler
end

Mixin Example

Mixins
module Doubler
 def double
 self + self
 end
end

simple 2D point class that
includes the Doubler Mixin --->
Note: This class provides an
implementation of +

class Pt
 attr_accessor :x, :y
 include Doubler

 def + other
 ans = Pt.new
 ans.x = self.x + other.x
 ans.y = self.y + other.y
 ans
 end
end

Method Lookup Rules with Mixins

Looking for a method m in receiver obj:

1. Check for m in obj’s class
2. Check the mixins that obj includes (later mixins shadow earlier mixins)
3. Check for m in obj’s superclass
4. Check the mixins that obj’s superclass includes
5. etc...

Mixin methods are included in the same object, so it’s usually bad style for
mixin methods to use instance variables since names can clash.

Two Most Common Mixins in Ruby

Comparable (http://ruby-doc.org/core-2.2.3/Comparable.html)

● Defines <, >, ==, !=, >=, <= in terms of <=>
○ In other words, all you have to do is define <=> and include Comparable

to get <, >, ==, !=, >=, <= for free

● The <=> operator is a comparison operator that returns -1, 0, or +1
depending on if the receiver is less than, equal to, or greater than the given
other object
○ Similar to Java’s compareTo method

http://ruby-doc.org/core-2.2.3/Comparable.html

Two Most Common Mixins in Ruby

Enumerable (http://ruby-doc.org/core-2.2.3/Enumerable.html)

● Defines many iterators (map, inject, select, any?, all?, etc.) in terms
of each
○ In other words, all you have to do is define each and include Enumerable

to get map, inject, select, any?, all?, etc. for free

● The each method must produce successive members of the collection
○ Conceptually similar to iterators in Java and other languages

● If you include both Comparable and Enumerable, you also get access to
various sorting methods for free

http://ruby-doc.org/core-2.2.3/Enumerable.html

Visitor pattern

Visitor pattern

Scenario: say you have some expression language and want to define a number
of operations over that language.

E.g., convert arithmetic expression to a string, evaluate an arithmetic
expression, add one to all constants, etc.

Visitor pattern: programming

Demo!

