
CSE 341 AB: Section 8
Josh Pollock

Office Hours: Tuesdays 3:00pm - 4:00pm



Questions?



Array: Ruby’s Sequence Workhorse

Hashes: Dynamic Records

Ranges: The Power of Enumerators

Agenda
Ruby Closures

- Blocks, Procs, and Lambdas

Ruby Under a Magnifying Glass
- Objects
- Classes



Array: Ruby’s Sequence Workhorse



The Many (Inter)Faces of the Ruby Array
Ruby uses dynamically sized arrays like Java’s ArrayLists.

These are nice middle ground between linked lists and statically sized arrays.

Allow fast random access and asymptotically fast insertion and deletion.

Ruby array entries don’t need to have the same type
(“natural” in dynamically typed languages)

Ruby arrays are super flexible.

Ruby uses arrays for lists, sets, stacks, and queues!



(Ordered) Sets
We can model sets as arrays without duplicate entries.

Remove duplicates with .uniq

Union: |.

Intersection: &.

Difference: -.



Stacks and Queues

1 2 3 4

0

unshift

shift

5

push 
(<<)

pop



To the Code!
(examples and more useful methods)



Hashes: Dynamic Records
A map from keys to values.

Keys don’t have to have the same type!

Keys and entries are mutable. They can be updated dynamically.

See code for examples.



Ranges: The Power of Enumerators
Ranges are enumerators, not lists.

Somewhat like the streams we saw in Racket, they are lazy.

The only do computation when necessary.

Syntax:

i..j [i, j] -- includes j

i...j [i, j) -- excludes j

For step size, use .step.



The Takeaway
Ruby has several flexible ways of constructing complex data.

This flexibility is characteristic of dynamically typed languages (cf. Python).

Consult the Ruby documentation. It’s really good.



Ruby Closures



Let’s Take a Closer Look at Ruby Closures
Ruby gives us 3 ways to define a closure:

● Block
● Proc
● Lambda

Lexical scope, but variables are stored as references to objects.
E.g. Modifying an array referenced by a closure may change its behavior.

Use .call to call them.



Block Cheat Sheet
The most common type of closure in Ruby.

All methods take a block argument, it may not be used.

Call a block with yield.

Use return to return from an enclosing method.

Give a block an explicit name with &block_name.



Proc
Procs are essentially blocks as objects.

Initialize like any other object.



Issues with Blocks and Procs
return jumps out of the method where the block was called.

They don’t check they’re passed the right number of arguments.



Lambda is a special kind of Proc with special behavior.

Create with lambda or ->.

Work like “normal” closures.

return returns from the lambda.

Lambda checks it gets the right number of arguments.

Lambda



Diving In
If I were to write an explanation of Ruby closures, I would mostly just write this:

https://www.rubyguides.com/2016/02/ruby-procs-and-lambdas/

So let’s just use it!

https://www.rubyguides.com/2016/02/ruby-procs-and-lambdas/


Practice Using Blocks
Let’s write Array#map.



The Takeaway
Ruby takes a pragmatic, OO approach to first-class functions.

The typical case is supported by blocks. You should use them most often.

Ruby is a real-word language so it supports the long-tail of use cases
with Proc and lambda.

This makes the language more
complex, especially b/c Proc
and lambda extend the language
implementation.

https://en.wikipedia.org/wiki/Long_tail#/media/File:Long_tail.svg

block

Proc and lambda

https://en.wikipedia.org/wiki/Long_tail#/media/File:Long_tail.svg


Ruby Under a Magnifying Glass*

*An oversimplified adaptation of
Chapter 5 from Ruby Under a Microscope by Pat Shaughnessy



Ruby’s Data Representation
Everything really is an object!

But there is a special type of object: a class definition.

“Primitives” like integers, strings, and arrays also have their own special 
representations, but we can ignore these subtleties.



What Is a Ruby Object (Roughly)?
Just a pair of a pointer to a class and a map from instance variable names to values.

class
ColorPoint

(really points to 
a class object)

instance variables (@)

x 0

y 0

color "red"

class Point
  attr_accessor :x, :y
  def initialize(x, y)
    @x = x
    @y = y
  end
end

class ColorPoint < Point
  attr_accessor :color
  def initialize(x, y, color)
    super(x, y)
    @color = color
  end
end

cp = ColorPoint.new(0, 0, "red")

cp



What Is a Ruby Class (Roughly)?
It must be an object so it has to have a class pointer and instance variables.

class Point
  attr_accessor :x, :y
  def initialize(x, y)
    @x = x
    @y = y
  end
end

class ColorPoint < Point
  attr_accessor :color
  def initialize(x, y, color)
    super(x, y)
    @color = color
  end
end

A class instance variable is created
by assigning to an instance variable
in the class’s top-level scope.

class
Class

ColorPoint

class instance variables (@)



What Is a Ruby Class (Roughly)?
But it also needs a list of methods.

class Point
  attr_accessor :x, :y
  def initialize(x, y)
    @x = x
    @y = y
  end
end

class ColorPoint < Point
  attr_accessor :color
  def initialize(x, y, color)
    super(x, y)
    @color = color
  end
end

class
Class

ColorPoint

methods

initialize

class instance variables (@)



What Is a Ruby Class (Roughly)?
And constants...

class
Class

class Point
  attr_accessor :x, :y
  def initialize(x, y)
    @x = x
    @y = y
  end
end

class ColorPoint < Point
  attr_accessor :color
  def initialize(x, y, color)
    super(x, y)
    @color = color
  end
end

ColorPoint

methods

initialize

class instance variables (@)

constants



What Is a Ruby Class (Roughly)?
And class variables!

class
Class

class Point
  attr_accessor :x, :y
  def initialize(x, y)
    @x = x
    @y = y
  end
end

class ColorPoint < Point
  attr_accessor :color
  def initialize(x, y, color)
    super(x, y)
    @color = color
  end
end

ColorPoint

methods

initialize

class instance variables (@)

constants

class variables (@@)



What Is a Ruby Class (Roughly)?
Oh and a superclass.

class
Class

class Point
  attr_accessor :x, :y
  def initialize(x, y)
    @x = x
    @y = y
  end
end

class ColorPoint < Point
  attr_accessor :color
  def initialize(x, y, color)
    super(x, y)
    @color = color
  end
end

ColorPoint

methods

initialize

class instance variables (@)

constants

class variables (@@)

superclass
Point



What Is a Ruby Class (Roughly)?
We haven’t even touched on class methods! There are still a bunch of lies here.

class
Class

class Point
  attr_accessor :x, :y
  def initialize(x, y)
    @x = x
    @y = y
  end
end

class ColorPoint < Point
  attr_accessor :color
  def initialize(x, y, color)
    super(x, y)
    @color = color
  end
end

ColorPoint

methods

initialize

class instance variables (@)

constants

class variables (@@)

superclass
Point



The Takeaway

Object

class pointer instance variables (@)
class pointer

methods

class instance variables (@)

constants

class variables (@@)

superclass 
pointer

Class

Ruby has a more complicated runtime model than other languages we’ve seen.
This model is leaky! We need to understand some aspects of the runtime.

Classes “own” methods and constants.
A class has a class pointer since it’s an object.
A class has a superclass pointer since it’s a class.


