
CSE341
Section 4

Mutual Recursion, Modules, and Currying

Adapted from slides by Yuma Tou and Taylor Blau 



Agenda

1. Mutual Recursion

2. ML module practice

3. Currying practice



Mutual Recursion
Say we want to write a function that takes a list 

and returns a bool which is true if and only if the 

list has alternating 0s and 1s.

● is_alternating [0,1,0] = true

● is_alternating [1,0,1] = true

● Is_alternating [1,1,0] = false 



The idea
● val zero = fn : int list -> bool

● val one = fn : int list -> bool

Each function checks if the list begins with a zero 

or one, and then calls the other on the tail.

Let’s try it!



The problem
zero cannot call one, because one was defined 

after zero and so is not in the closure of zero.

If we reverse them, then one cannot call zero.

What do we do?



The solution
fun zero xs = …

and one xs = …

Now both functions can call each other!



Modules
Good for organization

● Can group bindings into separate modules

Good for maintaining invariants by hiding 

implementation details from client

● e.g. keeping rationals in lowest terms



Module practice
Remember: structure Foo :> BAR is allowed if Foo provides:

● every non-abstract type in BAR (as specified)

● every abstract type in BAR (in some way)

● every val-binding in BAR (can have more general types)

● every exception in BAR

Foo can also define things that are not defined in BAR!



Currying
Before Currying:



Currying
With Currying:



Currying - Syntactic Sugar
Here are three ways to say the same thing

(* where e is some expression *)

fun f x y = e

val f = fn x => (fn y => e)

fun f x = fn y => e





Tangent: foldr v foldl


