CSE341: Programming Languages

Lecture 6
Nested Patterns
Exceptions
Tail Recursion

Eric Mullen
Autumn 2019
Nested patterns

- We can nest patterns as deep as we want
 - Just like we can nest expressions as deep as we want
 - Often avoids hard-to-read, wordy nested case expressions

- So the full meaning of pattern-matching is to compare a pattern against a value for the “same shape” and bind variables to the “right parts”
 - More precise recursive definition coming after examples
Useful example: zip/unzip 3 lists

fun zip3 lists =
 case lists of
 ([],[],[]) => []
 | (hd1::tl1,hd2::tl2,hd3::tl3) => (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
 | _ => raise ListLengthMismatch

fun unzip3 triples =
 case triples of
 [] => ([],[],[])
 | (a,b,c)::tl => let val (l1, l2, l3) = unzip3 tl in
 (a::l1,b::l2,c::l3)
 end

More examples in .sml files
Style

- Nested patterns can lead to very elegant, concise code
 - Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
 - Example: `unzip3` and `nondecreasing`
 - A common idiom is matching against a tuple of datatypes to compare them
 - Examples: `zip3` and `multsign`

- Wildcards are good style: use them instead of variables when you do not need the data
 - Examples: `len` and `multsign`
(Most of) the full definition

The semantics for pattern-matching takes a pattern p and a value v and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If p is a variable x, the match succeeds and x is bound to v
- If p is $____$, the match succeeds and no bindings are introduced
- If p is (p_1,\ldots,p_n) and v is (v_1,\ldots,v_n), the match succeeds if and only if p_1 matches v_1, \ldots, p_n matches v_n. The bindings are the union of all bindings from the submatches
- If p is $C\ p_1$, the match succeeds if v is $C\ v_1$ (i.e., the same constructor) and p_1 matches v_1. The bindings are the bindings from the submatch.
- … (there are several other similar forms of patterns)
Examples

- Pattern \texttt{a::b::c::d} matches all lists with \texttt{>= 3} elements
- Pattern \texttt{a::b::c::[]} matches all lists with 3 elements
- Pattern \texttt{((a,b),(c,d))::e} matches all non-empty lists of pairs of pairs
Exceptions

An exception binding introduces a new kind of exception

```
exception MyUndesirableCondition
exception MyOtherException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```
raise MyUndesirableException
raise (MyOtherException (7,9))
```

A handle expression can handle (a.k.a. catch) an exception

- If doesn’t match, exception continues to propagate

```
e1 handle MyUndesirableException => e2
e1 handle MyOtherException(x,y) => e2
```
Actually…

Exceptions are a lot like datatype constructors…

- Declaring an exception adds a constructor for type `exn`
- Can pass values of `exn` anywhere (e.g., function arguments)
 - Not too common to do this but can be useful
- `handle` can have multiple branches with patterns for type `exn`
Recursion

Should now be comfortable with recursion:

• No harder than using a loop (whatever that is 😊)
• Often much easier than a loop
 – When processing a tree (e.g., evaluate an arithmetic expression)
 – Examples like appending lists
 – Avoids mutation even for local variables
• Now:
 – How to reason about efficiency of recursion
 – The importance of tail recursion
 – Using an accumulator to achieve tail recursion
 – [No new language features here]
Call-stacks

While a program runs, there is a call stack of function calls that have started but not yet returned

- Calling a function f pushes an instance of f on the stack
- When a call to f finishes, it is popped from the stack

These stack-frames store information like the value of local variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same function
fun fact n = if n=0 then 1 else n*fact(n-1)
val x = fact 3
fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end
 in
 aux(n,1)
 end
val x = fact 3

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

<table>
<thead>
<tr>
<th>fact 3</th>
<th>fact 3: _</th>
<th>fact 3: _</th>
<th>fact 3: _</th>
</tr>
</thead>
<tbody>
<tr>
<td>aux (3,1)</td>
<td>aux (3,1): _</td>
<td>aux (3,1): _</td>
<td>aux (3,1): _</td>
</tr>
<tr>
<td>aux (2,3)</td>
<td>aux (2,3): _</td>
<td>aux (2,3): _</td>
<td>aux (2,3): _</td>
</tr>
<tr>
<td>aux (1,6)</td>
<td>aux (1,6): _</td>
<td>aux (1,6): _</td>
<td>aux (1,6): _</td>
</tr>
<tr>
<td>aux (0,6)</td>
<td>aux (0,6): 6</td>
<td>aux (0,6): 6</td>
<td>aux (0,6): 6</td>
</tr>
</tbody>
</table>

Etc…
An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee's result and return it without any further evaluation.

ML recognizes these *tail calls* in the compiler and treats them differently:

- Pop the caller *before* the call, allowing callee to *reuse* the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization.
What really happens

fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end
val x = fact 3
Moral of tail recursion

- Where reasonably elegant, feasible, and important, rewriting functions to be *tail-recursive* can be much more efficient
 - Tail-recursive: recursive calls are tail-calls

- There is a methodology that can often guide this transformation:
 - Create a helper function that takes an *accumulator*
 - Old base case becomes initial accumulator
 - New base case becomes final accumulator
Methodology already seen

fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end
val x = fact 3
Another example

fun sum xs =
 case xs of
 [] => 0
 | x::xs' => x + sum xs'

fun sum xs =
 let fun aux(xs,acc) =
 case xs of
 [] => acc
 | x::xs' => aux(xs',x+acc)
 in
 aux(xs,0)
end
And another

fun rev xs =
 case xs of
 [] => []
 | x::xs' => (rev xs') @ [x]

fun rev xs =
 let fun aux(xs,acc) =
 case xs of
 [] => acc
 | x::xs' => aux(xs',x::acc)
 in
 aux(xs,[[]])
 end
Actually much better

fun rev xs =
 case xs of
 [] => []
 | x:xs' => (rev xs') @ [x]

- For fact and sum, tail-recursion is faster but both ways linear time
- Non-tail recursive rev is quadratic because each recursive call uses append, which must traverse the first list
 - And 1+2+…+(length-1) is almost length*length/2
 - Moral: beware list-append, especially within outer recursion
- Cons constant-time (and fast), so accumulator version much better
Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space.

Most obvious examples are functions that process trees.

In these cases, the natural recursive approach is the way to go:
- You could get one recursive call to be a tail call, but rarely worth the complication.

Also beware the wrath of premature optimization:
- Favor clear, concise code.
- But do use less space if inputs may be large.
What is a tail-call?

The “nothing left for caller to do” intuition usually suffices
- If the result of $f \ x$ is the “immediate result” for the enclosing function body, then $f \ x$ is a tail call

But we can define “tail position” recursively
- Then a “tail call” is a function call in “tail position”
Precise definition

A tail call is a function call in tail position

- If an expression is not in tail position, then no subexpressions are

- In fun f p = e, the body e is in tail position

- If if e1 then e2 else e3 is in tail position, then e2 and e3 are in tail position (but e1 is not). (Similar for case-expressions)

- If let b1 ... bn in e end is in tail position, then e is in tail position (but no binding expressions are)

- Function-call arguments e1 e2 are not in tail position

- ...

Autumn 2019 CSE341: Programming Languages 23