PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

CSE341: Programming Languages

Lecture 6
Nested Patterns
Exceptions
Tail Recursion

Eric Mullen
Autumn 2019

Nested patterns

+ We can nest patterns as deep as we want
— Just like we can nest expressions as deep as we want
— Often avoids hard-to-read, wordy nested case expressions

+ So the full meaning of pattern-matching is to compare a pattern
against a value for the “same shape” and bind variables to the
“right parts”

— More precise recursive definition coming after examples

Autumn 2019 CSE341: Programming Languages

Useful example: zip/unzip 3 lists

fun zip3 lists =
case lists of
(1,101, => 11
| (hdl::t11,hd2::t12,hd3::t13) =>
(hd1,hd2,hd3) : :zip3 (tll,tl2,t13)
| _ => raise ListLengthMismatch

fun unzip3 triples =
case triples of
[1 => (11,101,101
| (a,b,c)::tl =>
let val (11, 12, 13) = unzip3 tl
in
(a::11,b::12,c::13)
end

More examples in . sml files

Autumn 2019 CSE341: Programming Languages 3

Style

Nested patterns can lead to very elegant, concise code
— Avoid nested case expressions if nested patterns are simpler
and avoid unnecessary branches or let-expressions
+ Example: unzip3 and nondecreasing
— A common idiom is matching against a tuple of datatypes to
compare them
« Examples: zip3 and multsign

Wildcards are good style: use them instead of variables when
you do not need the data
— Examples: 1en and multsign

Autumn 2019 CSE341: Programming Languages 4

(Most of) the full definition

The semantics for pattern-matching takes a pattern p and a value v
and decides (1) does it match and (2) if so, what variable bindings
are introduced.

Since patterns can nest, the definition is elegantly recursive, with a

separate rule for each kind of pattern. Some of the rules:

« If pis a variable x, the match succeeds and x is bound to v

« If pis _, the match succeeds and no bindings are introduced

If pis (p1,...,pn) and vis (v1,...,vn), the match succeeds if and

only if p7 matches v7, ..., pn matches vn. The bindings are the

union of all bindings from the submatches

« Ifpis Cp1, the match succeeds if vis C v1 (i.e., the same
constructor) and p7 matches v1. The bindings are the bindings
from the submatch.

* ... (there are several other similar forms of patterns)

Autumn 2019 CSE341: Programming Languages

Examples

— Pattern a: :b: :c: :d matches all lists with >= 3 elements
— Pattern a: :b::c::[] matches all lists with 3 elements

— Pattern ((a,b), (c,d)) : :e matches all non-empty lists of
pairs of pairs

Autumn 2019 CSE341: Programming Languages 6

Exceptions

An exception binding introduces a new kind of exception

exception MyUndesirableCondition
exception MyOtherException of int * int

The raise primitive raises (a.k.a. throws) an exception

raise MyUndesirableException
raise (MyOtherException (7,9))

Ahandle expression can handle (a.k.a. catch) an exception
— If doesn’t match, exception continues to propagate

el handle MyUndesirableException => e2
el handle MyOtherException(x,y) => e2

Autumn 2019 CSE341: Programming Languages 7

Actually...

Exceptions are a lot like datatype constructors...
« Declaring an exception adds a constructor for type exn

« Can pass values of exn anywhere (e.g., function arguments)
— Not too common to do this but can be useful

* handle can have multiple branches with patterns for type exn

Autumn 2019 CSE341: Programming Languages

Call-stacks

While a program runs, there is a call stack of function calls that have
started but not yet returned

— Calling a function £ pushes an instance of £ on the stack
— When a call to £ finishes, it is popped from the stack

These stack-frames store information like the value of local
variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same
function

Autumn 2019 CSE341: Programming Languages 10

Recursion
Should now be comfortable with recursion:
« No harder than using a loop (whatever that is &)

« Often much easier than a loop

— When processing a tree (e.g., evaluate an arithmetic
expression)

— Examples like appending lists
— Avoids mutation even for local variables

+ Now:
— How to reason about efficiency of recursion
— The importance of tail recursion
— Using an accumulator to achieve tail recursion
— [No new language features here]

Autumn 2019 CSE341: Programming Languages 9

Example
fun fact n = if n=0 then 1 else n*fact(n-1)

val x = fact 3

fact 3 | fact 3: 3*_|[fact 3: 3*_|[fact 3: 3%

fact 2 fact 2: 2*_ | fact 2: 2%
factl factl: 1%
fact 0

fact 3: 3*_ [| fact 3: 3*_ || fact 3: 3*_ || fact 3: 3*2

fact 2: 2*_ || fact2: 2*_ || fact 2: 2*1

factl:1* [[factl: 1*1

fact0: 1

CSE341: Programming Languages

Example Revised

fun fact n =
let fun aux(n,acc) =

if n=0
then acc
else aux(n-1,acc*n)
in
aux(n,1)
en

val x = fact 3

Still recursive, more complicated, but the result of recursive
calls is the result for the caller (no remaining multiplication)

Autumn 2019 CSE341: Programming Languages 12

The call-stacks

| fact3 | fact3: _ fact3: _ fact3: _

aux(3,1) aux(3,1) :_|aux(3,1):_

aux(2,3) aux(2,3):_

aux(1,6)
fact3: _ fact3: _ fact3: _ fact 3: _
aux(3,1):_|aux(3,1):_|faux(3,1):_|[aux(3,1):_

aux(2,3):_|aux(2,3):_[|[aux(2,3):_|[aux(2,3):6

aux(1,6):_|Jlaux(1,6):_|[laux(1,6):6

aux (0,6) aux(0,6) :6

TSEST Languages

Etc...

13

An optimization

It is unnecessary to keep around a stack-frame just so it can get a
callee’s result and return it without any further evaluation

ML recognizes these tail calls in the compiler and treats them
differently:

— Pop the caller before the call, allowing callee to reuse the
same stack space

— (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do
tail-call optimization

Autumn 2019 CSE341: Programming Languages 14

What really happens

fun fact n =
let fun aux(n,acc) =

if n=0
then acc
else aux(n-1,acc*n)
in
aux(n,1)
end

val x = fact 3

fact 3 " aux (3,1) ” aux (2,3) " aux (1,6) " aux (0, 6) |

Moral of tail recursion

Where reasonably elegant, feasible, and important, rewriting
functions to be tail-recursive can be much more efficient
— Tail-recursive: recursive calls are tail-calls

— Create a helper function that takes an accumulator
— Old base case becomes initial accumulator
— New base case becomes final accumulator

Autumn 2019 CSE341: Programming Languages

There is a methodology that can often guide this transformation:

Autumn 2019 CSE341: Programming Languages 15

Methodology already seen

fun fact n =
let fun aux(n,acc) =
if n=0
then acc
else aux(n-1,acc*n)
in
aux(n,1)
d

val x = fact 3

fact 3 " aux (3,1) ” aux (2,3) " aux (1,6) " aux (0, 6) |

Autumn 2019 CSE341: Programming Languages 17

Another example

fun sum xs =
case xs of
[1=>0
| x::xs’ => x + sum xs’

fun sum xs =
let fun aux(xs,acc) =
case xs of
[1 => acc
| x::xs’ => aux(xs’,6 x+acc)
in
aux (xs,0)
end

Autumn 2019 CSE341: Programming Languages 18

And another

fun rev xs =
case xs of
[1=>11

| x::xs’ => (rev xs’) @ [x]

fun rev xs =
let fun aux(xs,acc) =
case xs of
[1 => ace
| x::xs’ => aux(xs’,x::acc)
in
aux (xs, [1)
end

Autumn 2019 CSE341: Programming Languages 19

Actually much better

fun rev xs =
case xs of
[1 =>11]
x:

:xs’ => (rev xs’) @ [x]

For fact and sum, tail-recursion is faster but both ways linear time

+ Non-tail recursive rev is quadratic because each recursive call uses

append, which must traverse the first list
— And 1+2+...+(length-1) is almost length*length/2
— Moral: beware list-append, especially within outer recursion

+ Cons constant-time (and fast), so accumulator version much better

Autumn 2019 CSE341: Programming Languages 20

Always tail-recursive?

There are certainly cases where recursive functions cannot be
evaluated in a constant amount of space

Most obvious examples are functions that process trees
In these cases, the natural recursive approach is the way to go
— You could get one recursive call to be a tail call, but rarely
worth the complication
Also beware the wrath of premature optimization

— Favor clear, concise code
— But do use less space if inputs may be large

Autumn 2019 CSE341: Programming Languages 21

What is a tail-call?

The “nothing left for caller to do” intuition usually suffices
— Ifthe result of £ x is the “immediate result” for the enclosing
function body, then £ x is a tail call

But we can define “tail position” recursively
— Then a “tail call” is a function call in “tail position”

Autumn 2019 CSE341: Programming Languages 2

Precise definition

A tail call is a function call in tail position
« If an expression is not in tail position, then no subexpressions are

* Infun £ p = e, the body e is in tail position

Ifif el then e2 else e3isin tail position, then e2 and e3 are

in tail position (but el is not). (Similar for case-expressions)

* Iflet bl .. bn in e endisin tail position, then e is in tail
position (but no binding expressions are)

« Function-call arguments el e2 are not in tail position

Autumn 2019 CSE341: Programming Languages 23

