CSE341: Programming Languages

Lecture 4
Records, Datatypes, Case Expressions

Eric Mullen
Autumn 2019
Five different things

1. **Syntax**: How do you write language constructs?
2. **Semantics**: What do programs mean? (Evaluation rules)
3. **Idioms**: What are typical patterns for using language features to express your computation?
4. **Libraries**: What facilities does the language (or a well-known project) provide “standard”? (E.g., file access, data structures)
5. **Tools**: What do language implementations provide to make your job easier? (E.g., REPL, debugger, code formatter, ...)

 – Not actually part of the language

These are 5 separate issues

– In practice, all are essential for good programmers
– Many people confuse them, but shouldn’t
Our Focus

This course focuses on semantics and idioms

- Syntax is usually uninteresting
 - A fact to learn, like “The American Civil War ended in 1865”
 - People obsess over subjective preferences

- Libraries and tools crucial, but often learn new ones “on the job”
 - We are learning semantics and how to use that knowledge to understand all software and employ appropriate idioms
 - By avoiding most libraries/tools, our languages may look “silly” but so would any language used this way
How to build bigger types

• Already know:
 – Have various base types like int bool unit char
 – Ways to build (nested) compound types: tuples, lists, options

• Coming soon: more ways to build compound types

• First: 3 most important type building blocks in any language
 – “Each of”: A t value contains values of each of t1 t2 ... tn
 – “One of”: A t value contains values of one of t1 t2 ... tn
 – “Self reference”: A t value can refer to other t values

Remarkable: A lot of data can be described with just these building blocks

Note: These are not the common names for these concepts
Examples

• Tuples build each-of types
 – \texttt{int * bool} contains an \texttt{int} \textit{and} a \texttt{bool}

• Options build one-of types
 – \texttt{int option} contains an \texttt{int} \textit{or} it contains no data

• Lists use all three building blocks
 – \texttt{int list} contains an \texttt{int} \textit{and} another \texttt{int list} \textit{or} it contains no data

• And of course we can nest compound types
 – \((\texttt{int * int) option * (int list list)})\ option
Rest of this Lecture

- Another way to build each-of types in ML
 - *Records*: have named *fields*
 - Connection to tuples and idea of *syntactic sugar*

- A way to build and use our own one-of types in ML
 - For example, a type that contains an *int* or a *string*
 - Will lead to *pattern-matching*, one of ML’s coolest and strangest-to-Java-programmers features

- Later in course: How OOP does one-of types
 - Key contrast with procedural and functional programming
Records

Record values have fields (any name) holding values

\[
\{ f_1 = v_1, \ldots, f_n = v_n \}
\]

Record types have fields (and name) holding types

\[
\{ f_1 : t_1, \ldots, f_n : t_n \}
\]

The order of fields in a record value or type never matters

– REPL alphabetizes fields just for consistency

Building records:

\[
\{ f_1 = e_1, \ldots, f_n = e_n \}
\]

Accessing components:

\[
\#\text{myfieldname } e
\]

(Evaluation rules and type-checking as expected)
Example

{\textit{name} = "Matai", \textit{id} = 4 - 3}

Evaluates to

{\textit{id} = 1, \textit{name} = "Matai"}

And has type

{\textit{id} : \textit{int}, \textit{name} : \textit{string}}

If some expression such as a variable x has this type, then get fields with:

\#	extit{id} \ x \quad \#	extit{name} \ x

Note we did not have to declare any record types

- The same program could also make a

{\textit{id}=true,\textit{ego}=false} of type {\textit{id}:bool,\textit{ego}:bool}
By name vs. by position

• Little difference between \((4, 7, 9)\) and \{f=4, g=7, h=9\}
 – Tuples a little shorter
 – Records a little easier to remember “what is where”
 – Generally a matter of taste, but for many (6? 8? 12?) fields, a record is usually a better choice

• A common decision for a construct’s syntax is whether to refer to things by position (as in tuples) or by some (field) name (as with records)
 – A common hybrid is like with Java method arguments (and ML functions as used so far):
 • Caller uses \textit{position}
 • Callee uses \textit{variables}
 • Could totally do it differently; some languages have
The truth about tuples

Previous lecture gave tuples syntax, type-checking rules, and evaluation rules

But we could have done this instead:
- Tuple syntax is just a different way to write certain records
- \((e_1, \ldots, e_n)\) is another way of writing \(\{1=e_1, \ldots, n=e_n\}\)
- \(t_1*\ldots*t_n\) is another way of writing \(\{1:t_1, \ldots, n:t_n\}\)
- In other words, records with field names 1, 2, ...

In fact, this is how ML actually defines tuples
- Other than special syntax in programs and printing, they don’t exist
- You really can write \(\{1=4, 2=7, 3=9\}\), but it’s bad style
Syntactic sugar

“Tuples are just syntactic sugar for records with fields named 1, 2, … n”

- **Syntactic**: Can describe the semantics entirely by the corresponding record syntax

- **Sugar**: They make the language sweeter 😊

Will see many more examples of syntactic sugar
 - They simplify *understanding* the language
 - They simplify *implementing* the language

Why? Because there are fewer semantics to worry about even though we have the syntactic convenience of tuples

Another example we saw: *andalso* and *orelse* vs. *if then else*
Datatype bindings

A “strange” (?) and totally awesome (!) way to make one-of types:

- A datatype binding

```plaintext
datatype mytype = TwoInts of int * int
| Str of string
| Pizza
```

- Adds a new type `mytype` to the environment
- Adds constructors to the environment: `TwoInts`, `Str`, and `Pizza`
- A constructor is (among other things), a function that makes values of the new type (or is a value of the new type):
 - `TwoInts : int * int -> mytype`
 - `Str : string -> mytype`
 - `Pizza : mytype`
The values we make

```-scala
datatype mytype = TwoInts of int * int
    | Str of string
    | Pizza
```

- Any value of type `mytype` is made from *one of* the constructors
- The value contains:
 - A "tag" for "which constructor" (e.g., `TwoInts`)
 - The corresponding data (e.g., `(7,9)`)
- Examples:
 - `TwoInts(3+4,5+4)` evaluates to `TwoInts(7,9)`
 - `Str(if true then "hi" else "bye")` evaluates to `Str("hi")`
 - `Pizza` is a value
Using them

So we know how to build datatype values; need to access them.

There are two aspects to accessing a datatype value:
1. Check what variant it is (what constructor made it)
2. Extract the data (if that variant has any)

Notice how our other one-of types used functions for this:
- `null` and `isSome` check variants
- `hd`, `tl`, and `valOf` extract data (raise exception on wrong variant)

ML could have done the same for datatype bindings:
- For example, functions like “isStr” and “getStrData”
- Instead it did something better
Case

ML combines the two aspects of accessing a one-of value with a case expression and pattern-matching

– Pattern-matching much more general/powerful (Lecture 5)

Example:

```ml
fun f x = (* f has type mytype -> int *)
  case x of
    Pizza => 3
  | TwoInts(i1,i2) => i1+i2
  | Str s => String.size s
```

• A multi-branch conditional to pick branch based on variant
• Extracts data and binds to variables local to that branch
• Type-checking: all branches must have same type
• Evaluation: evaluate between case … of and the right branch
Patterns

In general the syntax is:

\[
\text{case } e_0 \text{ of } \\
\quad p_1 \Rightarrow e_1 \\
\quad | \quad p_2 \Rightarrow e_2 \\
\quad \ldots \\
\quad | \quad p_n \Rightarrow e_n
\]

For today, each pattern is a constructor name followed by the right number of variables (i.e., \(C\) or \(C \ x\) or \(C (x, y)\) or …)

- Syntactically most patterns (all today) look like expressions
- But patterns are not expressions
 - We do not evaluate them
 - We see if the result of \(e_0\) matches them
Why this way is better

0. You can use pattern-matching to write your own testing and data-extractions functions if you must
 - But do not do that on your homework

1. You cannot forget a case (inexhaustive pattern-match warning)

2. You cannot duplicate a case (a type-checking error)

3. You will not forget to test the variant correctly and get an exception (like `hd []`)

4. Pattern-matching can be generalized and made more powerful, leading to elegant and concise code