
CSE341: Programming Languages 
 

Lecture 25 
Subtyping for OOP; 

Comparing/Combining Generics and Subtyping

Eric Mullen
Autumn 2019

CSE341: Programming Languages

Now…

Use what we learned about subtyping for records and functions to
understand subtyping for class-based OOP

– Like in Java/C#

Recall:
– Class names are also types
– Subclasses are also subtypes
– Substitution principle: Instance of subclass should usable in

place of instance of superclass

2Autumn 2019 CSE341: Programming Languages

An object is…

• Objects: mostly records holding fields and methods
– Fields are mutable
– Methods are immutable functions that also have access to
self

• So could design a type system using types very much like record
types
– Subtypes could have extra fields and methods
– Overriding methods could have contravariant arguments and

covariant results compared to method overridden
• Sound only because method “slots” are immutable!

3Autumn 2019

CSE341: Programming Languages

Actual Java/C#…

Compare/contrast to what our “theory” allows:

1. Types are class names and subtyping are explicit subclasses

2. A subclass can add fields and methods

3. A subclass can override a method with a covariant return type
– (No contravariant arguments; instead makes it a non-

overriding method of the same name)

(1) Is a subset of what is sound (so also sound)

(3) Is a subset of what is sound and a different choice (adding
method instead of overriding)

4Autumn 2019 CSE341: Programming Languages

Classes vs. Types

• A class defines an object's behavior
– Subclassing inherits behavior and changes it via extension and

overriding

• A type describes an object's methods’ argument/result types
– A subtype is substitutable in terms of its field/method types

• These are separate concepts: try to use the terms correctly
– Java/C# confuse them by requiring subclasses to be subtypes
– A class name is both a class and a type
– Confusion is convenient in practice

5Autumn 2019 CSE341: Programming Languages

Optional: More details

Java and C# are sound: They do not allow subtypes to do things
that would lead to “method missing” or accessing a field at the
wrong type

Confusing (?) Java example:
– Subclass can declare field name already declared by

superclass
– Two classes can use any two types for the field name
– Instances of subclass have two fields with same name
– “Which field is in scope” depends on which class defined the

method

6Autumn 2019

CSE341: Programming Languages

self/this is special
• Recall our Racket encoding of OOP-style

– “Objects” have a list of fields and a list of functions that take
self as an explicit extra argument

• So if self/this is a function argument, is it contravariant?
– No, it is covariant: a method in a subclass can use fields and

methods only available in the subclass: essential for OOP

– Sound because calls always use the “whole object” for self
– This is why coding up your own objects manually works much

less well in a statically typed languages
7

class A {
 int m(){ return 0; }
}
class B extends A {
 int x;
 int m(){ return x; }
}

Autumn 2019 CSE341: Programming Languages

What are generics good for?

Some good uses for parametric polymorphism:
• Types for functions that combine other functions:

• Types for functions that operate over generic collections

• Many other idioms

• General point: When types can “be anything” but multiple things
need to be “the same type”

8

fun compose (g,h) = fn x => g (h x)
(* compose : ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) *)

val length : 'a list -> int
val map : ('a -> 'b) -> 'a list -> 'b list
val swap : ('a * 'b) -> ('b * 'a)

Autumn 2019 CSE341: Programming Languages

Generics in Java

• Java generics a bit clumsier syntactically and semantically, but
can express the same ideas
– Without closures, often need to use (one-method) objects
– See also earlier optional lecture on closures in Java/C

• Simple example without higher-order functions (optional):

9

class Pair<T1,T2> {
 T1 x;
 T2 y;
 Pair(T1 _x, T2 _y){ x = _x; y = _y; }
 Pair<T2,T1> swap() {
 return new Pair<T2,T1>(y,x);
 }
 …
}

Autumn 2019

CSE341: Programming Languages

Subtyping is not good for this

• Using subtyping for containers is much more painful for clients
– Have to downcast items retrieved from containers
– Downcasting has run-time cost
– Downcasting can fail: no static check that container holds the

type of data you expect
– (Only gets more painful with higher-order functions like map)

10

class LamePair {
 Object x;
 Object y;
 LamePair(Object _x, Object _y){ x=_x; y=_y; }
 LamePair swap() { return new

LamePair(y,x); }
}
// error caught only at run-time:
String s = (String)(new LamePair("hi",4).y);

Autumn 2019 CSE341: Programming Languages

What is subtyping good for?

Some good uses for subtype polymorphism:

• Code that “needs a Foo” but fine to have “more than a Foo”

• Geometry on points works fine for colored points

• GUI widgets specialize the basic idea of “being on the screen”
and “responding to user actions”

11Autumn 2019 CSE341: Programming Languages

Awkward in ML

ML does not have subtyping, so this simply does not type-check:

Cumbersome workaround: have caller pass in getter functions:

– And clients still need different getters for points, color-points

12

(* {x:real, y:real} -> real *)
fun distToOrigin ({x=x,y=y}) =
 Math.sqrt(x*x + y*y)

val five = distToOrigin {x=3.0,y=4.0,color="red"}

(* ('a -> real) * ('a -> real) * 'a -> real *)
fun distToOrigin (getx, gety, v) =
 Math.sqrt((getx v)*(getx v)
 + (gety v)*(gety v))

Autumn 2019

CSE341: Programming Languages

Wanting both

• Could a language have generics and subtyping?
– Sure!

• More interestingly, want to combine them
– “Any type T1 that is a subtype of T2”
– Called bounded polymorphism
– Lets you do things naturally you cannot do with generics or

subtyping separately

13Autumn 2019 CSE341: Programming Languages

Example

Method that takes a list of points and a circle (center point, radius)
– Return new list of points in argument list that lie within circle

Basic method signature:

Java implementation straightforward assuming Point has a
distance method:

14

List<Point> inCircle(List<Point> pts,
 Point center,
 double r) { … }

List<Point> result = new ArrayList<Point>();
for(Point pt : pts)
 if(pt.distance(center) < r)
 result.add(pt);
return result;

Autumn 2019 CSE341: Programming Languages

Subtyping?

• Would like to use inCircle by passing a List<ColorPoint>
and getting back a List<ColorPoint>

• Java rightly disallows this: While inCircle would “do nothing
wrong” its type does not prevent:
– Returning a list that has a non-color-point in it
– Modifying pts by adding non-color-points to it

15

List<Point> inCircle(List<Point> pts,
 Point center,
 double r) { … }

Autumn 2019

CSE341: Programming Languages

Generics?

• We could change the method to be

– Now the type system allows passing in a List<Point> to
get a List<Point> returned or a List<ColorPoint> to
get a List<ColorPoint> returned

– But cannot implement inCircle properly: method body
should have no knowledge of type T

16

List<Point> inCircle(List<Point> pts,
 Point center,
 double r) { … }

<T> List<T> inCircle(List<T> pts,
 Point center,
 double r) { … }

Autumn 2019 CSE341: Programming Languages

Bounds

• What we want:

• Caller uses it generically, but must instantiate T with some
subtype of Point (including Point)

• Callee can assume T <: Point so it can do its job
• Callee must return a List<T> so output will contain only

elements from pts

17

<T> List<T> inCircle(List<T> pts,
 Point center,
 double r) where T <: Point
 { … }

Autumn 2019 CSE341: Programming Languages

Real Java

• The actual Java syntax:

• Note: For backward-compatibility and implementation reasons, in
Java there is actually always a way to use casts to get around the
static checking with generics ☹

– With or without bounded polymorphism

18

<T extends Pt> List<T> inCircle(List<T> pts,
 Pt center,
 double r) {
 List<T> result = new ArrayList<T>();
 for(T pt : pts)
 if(pt.distance(center) < r)
 result.add(pt);
 return result;
}

Autumn 2019

