CSE341: Programming Languages

Lecture 14
Thunks, Laziness, Streams, Memoization

Eric Mullen
Autumn 2019
Delayed evaluation

For each language construct, the semantics specifies when subexpressions get evaluated. In ML, Racket, Java, C:

- Function arguments are *eager* (call-by-value)
 - Evaluated once before calling the function
- Conditional branches are not eager

It matters: calling `factorial-bad` never terminates:

```scheme
(define (factorial-bad n)
    (my-if-bad (= n 0) 1 (* n (factorial-bad (- n 1)))))
```

```scheme
(define (my-if-bad x y z)
    (if x y z))
```
Thunks delay

We know how to delay evaluation: put expression in a function!
- Thanks to closures, can use all the same variables later

A zero-argument function used to delay evaluation is called a *thunk*
- As a verb: *thunk the expression*

This works (but it is silly to wrap `if` like this):

```scheme
(define (my-if x y z)
  (if x (y) (z)))

(define (fact n)
  (my-if (= n 0)
    (my-if (= n 0)
      (lambda() 1)
      (lambda() (* n (fact (- n 1)))))
    (lambda() (* n (fact (- n 1))))))
```
The key point

• Evaluate an expression e to get a result:

 e

• A function that *when called*, evaluates e and returns result
 – Zero-argument function for “thunking”

 $(\text{lambda} () \ e)$

• Evaluate e to some thunk and then call the thunk

 (e)

• Next: Powerful idioms related to delaying evaluation and/or avoided repeated or unnecessary computations
 – Some idioms also use mutation in encapsulated ways
Avoiding expensive computations

Thunks let you skip expensive computations if they are not needed

Great if take the true-branch:

\[
\text{define } (f \text{ th}) \\
\text{ if } (\ldots) 0 (\ldots (\text{th}) \ldots))
\]

But worse if you end up using the thunk more than once:

\[
\text{define } (f \text{ th}) \\
(\ldots (\text{if } (\ldots) 0 (\ldots (\text{th}) \ldots)) \\
\text{if } (\ldots) 0 (\ldots (\text{th}) \ldots)) \\
\ldots \\
\text{if } (\ldots) 0 (\ldots (\text{th}) \ldots)))
\]

In general, might not know many times a result is needed
Best of both worlds

Assuming some expensive computation has no side effects, ideally we would:

– Not compute it until needed
– Remember the answer so future uses complete immediately

Called lazy evaluation

Languages where most constructs, including function arguments, work this way are lazy languages

– Haskell

Racket predefines support for promises, but we can make our own

– Thunks and mutable pairs are enough
Delay and force

\[
\text{(define (my-delay th)}
\text{ (mcons #f th))}
\]

\[
\text{(define (my-force p)}
\text{ (if (mcar p)
\text{ (mcdr p)
\text{ (begin (set-mcar! p #t)
\text{ (set-mcdr! p ((mcdr p))}
\text{ (mcdr p))))})}
\]

An ADT represented by a mutable pair

- \text{#f} in \text{car} means \text{cdr} is unevaluated thunk
 - Really a one-of type: thunk or result-of-thunk
- Ideally hide representation in a module
Using promises

\[
\text{(define } (f \ p) \\
\quad (\ldots (\text{if } (\ldots) 0 (\ldots (\text{my-force } p) \ldots))) \\
\quad (\text{if } (\ldots) 0 (\ldots (\text{my-force } p) \ldots)) \\
\quad \ldots \\
\quad (\text{if } (\ldots) 0 (\ldots (\text{my-force } p) \ldots))))
\]

\[
(f \ (\text{my-delay } (\lambda () e)))
\]
Lessons From Example

See code file for example that does multiplication using a very slow addition helper function

• With thunking second argument:
 – Great if first argument 0
 – Okay if first argument 1
 – Worse otherwise

• With precomputing second argument:
 – Okay in all cases

• With thunk that uses a promise for second argument:
 – Great if first argument 0
 – Okay otherwise
Streams

• A stream is an *infinite sequence* of values
 – So cannot make a stream by making all the values
 – Key idea: Use a thunk to delay creating most of the sequence
 – Just a programming idiom

A powerful concept for division of labor:
 – Stream producer knows how to create any number of values
 – Stream consumer decides how many values to ask for

Some examples of streams you might (not) be familiar with:
 – User actions (mouse clicks, etc.)
 – UNIX pipes: `cmd1 | cmd2` has `cmd2` “pull” data from `cmd1`
 – Output values from a sequential feedback circuit
Using streams

We will represent streams using pairs and thunks

Let a stream be a thunk that *when called* returns a pair:

\[(\text{next-answer} . \text{next-thunk})\]

So given a stream \(s\), the client can get any number of elements

- First: \((\text{car } (s))\)
- Second: \((\text{car } ((\text{cdr } (s))))\)
- Third: \((\text{car } ((\text{cdr } ((\text{cdr } (s))))))\)

(Usually bind \((\text{cdr } (s))\) to a variable or pass to a recursive function)
Example using streams

This function returns how many stream elements it takes to find one for which tester does not return #f

- Happens to be written with a tail-recursive helper function

```
(define (number-until stream tester)
  (letrec ([f (lambda (stream ans)
                  (let ([pr (stream)])
                    (if (tester (car pr))
                        ans
                        (f (cdr pr) (+ ans 1)))))])
    (f stream 1)))
```

- `(stream)` generates the pair
- So recursively pass `(cdr pr)`, the thunk for the rest of the infinite sequence
Streams

Coding up a stream in your program is easy
 – We will do functional streams using pairs and thunks

Let a stream be a thunk that *when called* returns a pair:
' (next-answer . next-thunk)

Saw how to use them, now how to make them…
 – Admittedly mind-bending, but uses what we know
Making streams

- How can one thunk create the right next thunk? Recursion!
 - Make a thunk that produces a pair where cdr is next thunk
 - A recursive function can return a thunk where recursive call does not happen until thunk is called

```
(define ones (lambda () (cons 1 ones)))
(define nats
  (letrec ([f (lambda (x)
                   (cons x (lambda () (f (+ x 1))))))
            (lambda () (f 1)))))
(define powers-of-two
  (letrec ([f (lambda (x)
                (cons x (lambda () (f (* x 2))))))
            (lambda () (f 2)))))
```
Getting it wrong

• This uses a variable before it is defined

```scheme
(define ones-really-bad (cons 1 ones-really-bad))
```

• This goes into an infinite loop making an infinite-length list

```scheme
(define ones-bad (lambda () cons 1 (ones-bad)))
(define (ones-bad) (cons 1 (ones-bad)))
```

• This is a stream: thunk that returns a pair withcdr a thunk

```scheme
(define ones (lambda () (cons 1 ones)))
(define (ones) (cons 1 ones))
```
Memoization

• If a function has no side effects and does not read mutable memory, no point in computing it twice for the same arguments
 – Can keep a cache of previous results
 – Net win if (1) maintaining cache is cheaper than recomputing and (2) cached results are reused

• Similar to promises, but if the function takes arguments, then there are multiple “previous results”

• For recursive functions, this memoization can lead to exponentially faster programs
 – Related to algorithmic technique of dynamic programming
How to do memoization: see example

• Need a (mutable) cache that all calls using the cache share
 – So must be defined outside the function(s) using it

• See code for an example with Fibonacci numbers

 – Good demonstration of the idea because it is short, but, as shown in the code, there are also easier less-general ways to make fibonacci efficient

 – (An association list (list of pairs) is a simple but sub-optimal data structure for a cache; okay for our example)
assoc

• Example uses `assoc`, which is just a library function you could look up in the Racket reference manual:

 `(assoc v lst)` takes a list of pairs and locates the first element of `lst` whose car is equal to `v` according to `is-equal?`. If such an element exists, the pair (i.e., an element of `lst`) is returned. Otherwise, the result is `#f`.

• Returns `#f` for not found to distinguish from finding a pair with `#f` in `cdr`