CSE341: Programming Languages

Lecture 12
Equivalence

Eric Mullen
Autumn 2019
Last Topic of Unit

More careful look at what “two pieces of code are equivalent” means

– Fundamental software-engineering idea

– Made easier with
 • Abstraction (hiding things)
 • Fewer side effects

Not about any “new ways to code something up”
Equivalence

Must reason about “are these equivalent” *all the time*
 - The more precisely you think about it the better

• *Code maintenance*: Can I simplify this code?

• *Backward compatibility*: Can I add new features without changing how any old features work?

• *Optimization*: Can I make this code faster?

• *Abstraction*: Can an external client tell I made this change?

To focus discussion: When can we say two functions are equivalent, even without looking at all calls to them?
 - May not know all the calls (e.g., we are editing a library)
A definition

Two functions are equivalent if they have the same “observable behavior” no matter how they are used anywhere in any program.

Given equivalent arguments, they:
- Produce equivalent results
- Have the same (non-)termination behavior
- Mutate (non-local) memory in the same way
- Do the same input/output
- Raise the same exceptions

Notice it is much easier to be equivalent if:
- There are fewer possible arguments, e.g., with a type system and abstraction
- We avoid side-effects: mutation, input/output, and exceptions
Example

Since looking up variables in ML has no side effects, these two functions are equivalent:

\[
\begin{align*}
\text{fun } f \ x &= x + x \\
\text{val } y &= 2 \\
\text{fun } f \ x &= y \times x
\end{align*}
\]

But these next two are not equivalent in general: it depends on what is passed for \(f \)

- Are equivalent if argument for \(f \) has no side-effects

\[
\begin{align*}
\text{fun } g \ (f, x) &= (f \ x) + (f \ x) \\
\text{val } y &= 2 \\
\text{fun } g \ (f, x) &= y \times (f \ x)
\end{align*}
\]

- Example: \(g ((\text{fn } i \Rightarrow \text{print } "hi" ; i), 7) \)
- Great reason for “pure” functional programming
Another example

These are equivalent only if functions bound to \texttt{g} and \texttt{h} do not raise exceptions or have side effects (printing, updating state, etc.)

- Again: pure functions make more things equivalent

\[
\text{fun } f \ x = \\
\text{ let } \\
\text{ val } y = g \ x \\
\text{ val } z = h \ x \\
\text{ in } \\
(y,z) \\
\text{ end }
\]

\[
\text{fun } f \ x = \\
\text{ let } \\
\text{ val } z = h \ x \\
\text{ val } y = g \ x \\
\text{ in } \\
(y,z) \\
\text{ end }
\]

- Example: \texttt{g} divides by 0 and \texttt{h} mutates a top-level reference
- Example: \texttt{g} writes to a reference that \texttt{h} reads from
One that really matters

Once again, turning the left into the right is great but only if the functions are pure:

\[
\text{map } f \ (\text{map } g \ xs) \quad \text{map } (f \circ g) \ xs
\]
Syntactic sugar

Using or not using syntactic sugar is always equivalent
 – By definition, else not syntactic sugar

Example:

\[
\text{fun } f \ x = \begin{cases} \ x \text{ andalso } g \ x \end{cases}
\]

But be careful about evaluation order

\[
\text{fun } f \ x = \begin{cases} \ x \text{ andalso } g \ x \end{cases}
\]
Standard equivalences

Three general equivalences that always work for functions
– In any (?) decent language

1. Consistently rename bound variables and uses

\[
\begin{align*}
\text{val } y &= 14 \\
\text{fun } f \ x &= x+y+x
\end{align*}
\]
\[
\begin{align*}
\text{val } y &= 14 \\
\text{fun } f \ z &= z+y+z
\end{align*}
\]

But notice you can't use a variable name already used in the function body to refer to something else

\[
\begin{align*}
\text{val } y &= 14 \\
\text{fun } f \ x &= x+y+x
\end{align*}
\]
\[
\begin{align*}
\text{val } y &= 14 \\
\text{fun } f \ y &= y+y+y
\end{align*}
\]
\[
\begin{align*}
\text{fun } f \ x &= \text{let } \text{val } y = 3 \\
&\quad \text{in } x+y \text{ end}
\end{align*}
\]
\[
\begin{align*}
\text{fun } f \ y &= \text{let } \text{val } y = 3 \\
&\quad \text{in } y+y \text{ end}
\end{align*}
\]
Standard equivalences

Three general equivalences that always work for functions
– In (any?) decent language

2. Use a helper function or do not

\[
\begin{align*}
\text{val } y &= 14 \\
\text{fun } g \ z &= (z+y+z)+z
\end{align*}
\]
\[
\begin{align*}
\text{val } y &= 14 \\
\text{fun } f \ x &= x+y+x \\
\text{fun } g \ z &= (f \ z)+z
\end{align*}
\]

But notice you need to be careful about environments

\[
\begin{align*}
\text{val } y &= 14 \\
\text{val } y &= 7 \\
\text{fun } g \ z &= (z+y+z)+z
\end{align*}
\]
\[
\begin{align*}
\text{val } y &= 14 \\
\text{fun } f \ x &= x+y+x \\
\text{val } y &= 7 \\
\text{fun } g \ z &= (f \ z)+z
\end{align*}
\]
Standard equivalences

Three general equivalences that always work for functions
- In (any?) decent language

3. Unnecessary function wrapping

\[
\begin{align*}
\text{fun } f \ x &= x+x \\
\text{fun } g \ y &= f \ y \\
\text{fun } h () &= (\text{print } "hi"; f) \\
\text{fun } g \ y &= (h()) \ y
\end{align*}
\]

\[
\begin{align*}
\text{fun } f \ x &= x+x \\
\text{val } g &= f
\end{align*}
\]

But notice that if you compute the function to call and \textit{that computation} has side-effects, you have to be careful

\[
\begin{align*}
\text{fun } f \ x &= x+x \\
\text{fun } h () &= (\text{print } "hi"; f) \\
\text{val } g &= (h())
\end{align*}
\]
One more

If we ignore types, then ML let-bindings can be syntactic sugar for calling an anonymous function:

\[
\text{let val } x = e_1 \quad \text{in } e_2 \quad \text{end}
\]

\[
(f \text{ fn } x = \rightarrow e_2) \ e_1
\]

- These both evaluate \(e_1\) to \(v_1\), then evaluate \(e_2\) in an environment extended to map \(x\) to \(v_1\)
- So \textit{exactly} the same evaluation of expressions and result

But in ML, there is a type-system difference:
- \(x\) on the left can have a polymorphic type, but not on the right
- Can always go from right to left
- If \(x\) need not be polymorphic, can go from left to right
What about performance?

According to our definition of equivalence, these two functions are equivalent, but we learned one is awful

– (Actually we studied this before pattern-matching)

```plaintext
fun max xs = 
  case xs of
    [] => raise Empty
  | x::[] => x
  | x::xs' =>
    if x > max xs'
    then x
    else max xs'
```

```plaintext
fun max xs = 
  case xs of
    [] => raise Empty
  | x::[] => x
  | x::xs' =>
    let
      val y = max xs'
    in
      if x > y
      then x
      else y
    end
```
Different definitions for different jobs

- **PL Equivalence (341):** given same inputs, same outputs and effects
 - Good: Lets us replace bad max with good max
 - Bad: Ignores performance in the extreme

- **Asymptotic equivalence (332):** Ignore constant factors
 - Good: Focus on the algorithm and efficiency for large inputs
 - Bad: Ignores “four times faster”

- **Systems equivalence (333):** Account for constant overheads, performance tune
 - Good: Faster means different and better
 - Bad: Beware overtuning on “wrong” (e.g., small) inputs; definition does not let you “swap in a different algorithm”

Claim: Computer scientists implicitly (?) use all three every (?) day