Function definitions

Functions: the most important building block in the whole course
- Like Java methods, have arguments and result
- But no classes, `this`, `return`, etc.

Example *function binding*:

```
(* Note: correct only if y>=0 *)

fun pow (x : int, y : int) =
  if y=0
  then 1
  else x * pow(x,y-1)
```

Note: The *body* includes a (recursive) *function call*: `pow(x,y-1)`
Example, extended

fun pow (x : int, y : int) =
 if y=0
 then 1
 else x * pow(x,y-1)

fun cube (x : int) =
 pow (x,3)

val sixtyfour = cube 4

val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
 – Example: \texttt{int * int -> int}
 – In expressions, * is multiplication: \texttt{x * pow(x,y-1)}

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for \texttt{mutual recursion} (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
Function bindings: 3 questions

• Syntax: \[\textbf{fun } x_0 \ (x_1 : t_1, \ldots, \ x_n : t_n) = e \]
 – (Will generalize in later lecture)

• Evaluation: \textbf{A function is a value!} (No evaluation yet)
 – Adds \(x_0\) to environment so \textit{later} expressions can \textit{call} it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding \(x_0 : (t_1 \times \ldots \times t_n) \rightarrow t\) if:
 – Can type-check body \(e\) to have type \(t\) in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \(x_1 : t_1, \ldots, x_n : t_n\) (arguments with their types)
 • \(x_0 : (t_1 \times \ldots \times t_n) \rightarrow t\) (for recursion)
More on type-checking

\begin{verbatim}
fun x0 (x1 : t1, ..., xn : tn) = e
\end{verbatim}

- New kind of type: \((t_1 \times \cdots \times t_n) \rightarrow t\)
 - Result type on right
 - The overall type-checking result is to give \(x_0\) this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in \(e\) (unsurprising)

- Because evaluation of a call to \(x_0\) will return result of evaluating \(e\), the return type of \(x_0\) is the type of \(e\)

- The type-checker “magically” figures out \(t\) if such a \(t\) exists
 - Later lecture: Requires some cleverness due to recursion
 - More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

Syntax: $e_0\ (e_1,\ldots, e_n)$
- (Will generalize later)
- Parentheses optional if there is exactly one argument

Type-checking:
If:
- e_0 has some type $(t_1 \times \ldots \times t_n) \rightarrow t$
- e_1 has type t_1, \ldots, e_n has type t_n

Then:
- $e_0\ (e_1,\ldots, e_n)$ has type t

Example: $\text{pow}(x, y-1)$ in previous example has type int
Function-calls continued

\[e_0(e_1, \ldots, e_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(e_0\) to a function \(\text{fun } x_0 (x_1 : t_1, \ldots, x_n : t_n) = e\)

 – Since call type-checked, result **will be** a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n\)

3. Result is evaluation of \(e\) in an environment extended to map \(x_1\) to \(v_1\), \(\ldots\), \(x_n\) to \(v_n\)

 – (“An environment” is actually the environment where the function was defined, and includes \(x_0\) for recursion)
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
- Now ways to build up data with multiple parts
- This is essential
- Java examples: classes with fields, arrays

Now:
- Tuples: fixed “number of pieces” that may have different types

Then:
- Lists: any “number of pieces” that all have the same type

Later:
- Other more general ways to create compound data
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

- **Syntax:** \((e_1, e_2)\)

- **Evaluation:** Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 - A pair of values is a value

- **Type-checking:** If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 - A new kind of type
Pairs (2-tuples)

Need a way to \textit{build} pairs and a way to \textit{access} the pieces

Access:

\begin{itemize}
 \item Syntax: \#1 \texttt{e} and \#2 \texttt{e}
 \item Evaluation: Evaluate \texttt{e} to a pair of values and return first or second piece
 \begin{itemize}
 \item Example: If \texttt{e} is a variable \texttt{x}, then look up \texttt{x} in environment
 \end{itemize}
 \item Type-checking: If \texttt{e} has type \texttt{ta \ast tb}, then \#1 \texttt{e} has type \texttt{ta} and \#2 \texttt{e} has type \texttt{tb}
\end{itemize}
Examples

Functions can take and return pairs

```plaintext
fun swap (pr : int*bool) =
    (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
    (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
    (x div y, x mod y)

fun sort_pair (pr : int*int) =
    if (#1 pr) < (#2 pr)
    then pr
    else (#2 pr, #1 pr)
```
Tuples

Actually, you can have tuples with more than two parts
 – A new feature: a generalization of pairs

• \((e_1, e_2, \ldots, e_n)\)
• \(ta \ast tb \ast \ldots \ast tn\)
• \#1 e, \#2 e, \#3 e, \ldots\)

Homework 1 uses triples of type int*int*int a lot
Nesting

Pairs and tuples can be nested however you want
- Not a new feature: implied by the syntax and semantics

```plaintext
val x1 = (7, (true, 9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1)  (* bool *)
val x3 = (#2 x1)     (* bool*int *)
val x4 = ((3,5), ((4,8), (0,0)))
     (* (int*int)*((int*int)*((int*int))) *)
```
Lists

• Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

In contrast, a list:
 – Can have any number of elements
 – But all list elements have the same type

Need ways to \textit{build} lists and \textit{access} the pieces…
Building Lists

- The empty list is a value:

\[
[]
\]

- In general, a list of values is a value; elements separated by commas:

\[
[v_1, v_2, \ldots, v_n]
\]

- If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1, \ldots, v_n]\), then \(e_1::e_2\) evaluates to \([v, v_1, \ldots, v_n]\)

\(e_1::e_2\) (* pronounced "cons" *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- `null e` evaluates to `true` if and only if `e` evaluates to `[]`

- If `e` evaluates to `[v1,v2,…,vn]` then `hd e` evaluates to `v1`
 - (raise exception if `e` evaluates to `[]`)

- If `e` evaluates to `[v1,v2,…,vn]` then `tl e` evaluates to `[v2,…,vn]`
 - (raise exception if `e` evaluates to `[]`)
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type t, the type $t\ list$ describes lists where all elements have type t

- Examples: $\text{int list bool list int list list list (int * int) list (int list * int) list}$

• So $[]$ can have type $t\ list$ for any type t
 - SML uses type 'a list to indicate this ("tick a" or "alpha")
• For $e_1::e_2$ to type-check, we need a t such that e_1 has type t and e_2 has type $t\ list$. Then the result type is $t\ list$
• $\text{null : 'a list -> bool}$
• $\text{hd : 'a list -> 'a}$
• $\text{tl : 'a list -> 'a list}$
Example list functions

fun sum_list (xs : int list) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
 if x=0
 then []
 else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd(xs) :: append (tl(xs), ys)
Recursion again

Functions over lists are usually recursive
 – Only way to “get to all the elements”
• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

```haskell
fun sum_pair_list (xs : (int*int) list) = 
  if null xs 
  then 0 
  else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) = 
  if null xs 
  then [] 
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) = 
  if null xs 
  then [] 
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) = 
  (sum_list (firsts xs)) + (sum_list (seconds xs))
```