CSE341: Programming Languages

Lecture 2

Functions, Pairs, Lists

Zach Tatlock
Autumn 2019

Function definitions

Functions: the most important building block in the whole course
– Like Java methods, have arguments and result
– But no classes, this, return, etc.

Example function binding:

\[
\text{fun \(pow(x: \text{int}, y: \text{int}) = \)}
\]
\[
\text{if \(y=0 \) then 1 else } x * \text{pow}(x,y-1)\]

Note: The body includes a (recursive) function call: \(\text{pow}(x,y-1) \)

Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax
• The use of \(* \) in type syntax is not multiplication
 – Example: \(\text{int} * \text{int} \to \text{int} \)
 – In expressions, \(* \) is multiplication: \(x * \text{pow}(x,y-1) \)
• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for mutual recursion (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions

Function bindings: 3 questions

• Syntax: `fun x0 (x1 : t1, … , xn : tn) = e`
 – (Will generalize in later lecture)

• Evaluation: **A function is a value!** (No evaluation yet)
 – Adds `x0` to environment so later expressions can call it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding `x0 : (t1 * … * tn) -> t` if:
 – Can type-check body `e` to have type `t` in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • `x1 : t1, … , xn : tn` (arguments with their types)
 • `x0 : (t1 * … * tn) -> t` (for recursion)

More on type-checking

`fun x0 (x1 : t1, … , xn : tn) = e`

• New kind of type: `(t1 * … * tn) -> t`
 – Result type on right
 – The overall type-checking result is to give `x0` this type in rest of program (unlike Java, not for earlier bindings)
 – Arguments can be used only in `e` (unsurprising)

• Because evaluation of a call to `x0` will return result of evaluating `e`, the return type of `x0` is the type of `e`

• The type-checker “magically” figures out `t` if such a `t` exists
 – Later lecture: Requires some cleverness due to recursion
 – More magic after hw1: Later can omit argument types too

Function Calls

A new kind of expression: 3 questions

Syntax: `e0 (e1,...,en)`
 – (Will generalize later)
 – Parentheses optional if there is exactly one argument

Type-checking:

If:
 – `e0` has some type `(t1 * ... * tn) -> t`
 – `e1` has type `t1`, …, `en` has type `tn`

Then:
 – `e0 (e1,...,en)` has type `t`

Example: `pow(x,y-1)` in previous example has type `int`
Function-calls continued

- $e_0(e_1, \ldots, e_n)$

Evaluation:

1. (Under current dynamic environment,) evaluate e_0 to a function $\text{fun } x_0 (x_1 : t_1, \ldots, x_n : t_n) = e$
 - Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to values v_1, \ldots, v_n

3. Result is evaluation of e in an environment extended to map x_1 to v_1, \ldots, x_n to v_n
 - (“An environment” is actually the environment where the function was defined, and includes x_0 for recursion)

Tuples and lists

So far: numbers, booleans, conditionals, variables, functions

- Now ways to build up data with multiple parts
 - This is essential
 - Java examples: classes with fields, arrays

Now:

- *Tuples*: fixed “number of pieces” that may have different types

Then:

- *Lists*: any “number of pieces” that all have the same type

Later:

- Other more general ways to create compound data

Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

- Syntax: (e_1, e_2)

- Evaluation: Evaluate e_1 to v_1 and e_2 to v_2; result is (v_1, v_2)
 - A pair of values is a value

- Type-checking: If e_1 has type t_a and e_2 has type t_b, then the pair expression has type $t_a \times t_b$
 - A new kind of type

Access:

- Syntax: #1 e and #2 e

- Evaluation: Evaluate e to a pair of values and return first or second piece
 - Example: If e is a variable x, then look up x in environment

- Type-checking: If e has type $t_a \times t_b$, then #1 e has type t_a
 and #2 e has type t_b
Examples

Functions can take and return pairs

```plaintext
fun swap (pr : int*bool) = (#2 pr, #1 pr)
fun sum_two_pairs (pr1 : int*int, pr2 : int*int) = (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)
fun div_mod (x : int, y : int) = (x div y, x mod y)
fun sort_pair (pr : int*int) = if (#1 pr) < (#2 pr) then pr else (#2 pr, #1 pr)
```

Tuples

Actually, you can have tuples with more than two parts

- A new feature: a generalization of pairs

 * (e1,e2,...,en)
 * ta * tb * ... * tn
 * #1 e, #2 e, #3 e, ...

Homework 1 uses triples of type int*int*int a lot

Nesting

Pairs and tuples can be nested however you want

- Not a new feature: implied by the syntax and semantics

```plaintext
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = ((3,5),((4,8),(0,0))) (* (int*int)*((int*int)*(int*int)) *)
```

Lists

- Despite nested tuples, the type of a variable still "commits" to a particular "amount" of data

In contrast, a list:

- Can have any number of elements
- But all list elements have the same type

Need ways to build lists and access the pieces...
Building Lists

• The empty list is a value:

• In general, a list of values is a value; elements separated by commas:

• If \(e_1 \) evaluates to \(v \) and \(e_2 \) evaluates to a list \([v_1,\ldots,v_n] \), then \(e_1::e_2 \) evaluates to \([v,v_1,\ldots,v_n] \)

Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

• \textbf{null} \(e \) evaluates to \textbf{true} if and only if \(e \) evaluates to []

• If \(e \) evaluates to \([v_1,v_2,\ldots,v_n] \) then \textbf{hd} \(e \) evaluates to \(v_1 \)
 – (raise exception if \(e \) evaluates to [])

• If \(e \) evaluates to \([v_1,v_2,\ldots,v_n] \) then \textbf{tl} \(e \) evaluates to \([v_2,\ldots,v_n] \)
 – (raise exception if \(e \) evaluates to [])
 – Notice result is a list

Type-checking list operations

Lots of new types: For any type \(t \), the type \(t \) \textbf{list} describes lists where all elements have type \(t \)

• Examples: int list bool list int list list
 \(\text{(int * int) list \hspace{1cm} (int list * int) list} \)

• So [] can have type \(t \) \textbf{list} for any type \(t \)
 – SML uses type “\(\alpha \) \textbf{list}” to indicate this (“tick a” or “alpha”)

• For \(e_1::e_2 \) to type-check, we need a \(t \) such that \(e_1 \) has type \(t \) and \(e_2 \) has type \(t \) \textbf{list}. Then the result type is \(t \) \textbf{list}

• \textbf{null} : \(\alpha \textbf{list} \rightarrow \textbf{bool} \)

• \textbf{hd} : \(\alpha \textbf{list} \rightarrow \alpha \)

• \textbf{tl} : \(\alpha \textbf{list} \rightarrow \alpha \textbf{list} \)

Example list functions

\begin{verbatim}
fun sum_list (xs : int list) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
 if x=0
 then 0
 else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd (xs) :: append (tl(xs), ys)
\end{verbatim}
Recursion again

Functions over lists are usually recursive
 – Only way to "get to all the elements"
 • What should the answer be for the empty list?
 • What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists

Lists of pairs

Processing lists of pairs requires no new features. Examples:

```ocaml
fun sum_pair_list (xs : (int*int) list) =
  if null xs
  then 0
  else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) =
  if null xs
  then []
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) =
  if null xs
  then []
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) =
  (sum_list(firsts xs)) + (sum_list(seconds xs))
```